Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.agents import Tool | |
from langchain.agents import initialize_agent | |
from langchain.agents import AgentType | |
from langchain.chat_models import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.llms import HuggingFacePipeline | |
from transformers import pipeline | |
import os | |
from scholarly import scholarly | |
hf_token = os.environ.get("HF_TOKEN", None) | |
if hf_token: | |
os.environ["HUGGING_FACE_API_KEY"] = hf_token | |
else: | |
st.error("Hugging Face API key is not set. Please set the HF_TOKEN environment variable.") | |
st.stop() | |
# Definisi Tools | |
def wikipedia_search(query): | |
# Implementasi pencarian Wikipedia | |
return "Hasil pencarian Wikipedia untuk query: " + query | |
def answer_question(query): | |
# Implementasi model Q&A menggunakan HuggingFace | |
qa = pipeline('question-answering', model="deepset/roberta-base-squad2", tokenizer="deepset/roberta-base-squad2", device=0) | |
result = qa({"question": query, "context": "Ini adalah contoh teks untuk menjawab pertanyaan."}) | |
return result['answer'] | |
def search_arxiv(query): | |
# Implementasi pencarian ArXiv | |
search_query = scholarly.search_pubs_query(query) | |
result = next(search_query) | |
return f"Judul: {result.bib['title']}\nPenulis: {', '.join(result.bib['author'])}\nDOI: {result.bib['doi']}" | |
# Konfigurasi model LLM | |
llm = HuggingFacePipeline( | |
pipeline=pipeline("text-generation", model="gpt2"), | |
model_kwargs={"temperature": 0.7, "max_length": 300, "top_k": 50, "top_p": 0.95, "num_return_sequences": 1} | |
) | |
# Buat Tools | |
wiki_tool = Tool(name="wikipedia", func=wikipedia_search, description="Useful for when you need to answer general questions about people, places, and things.") | |
qa_tool = Tool(name="qa", func=answer_question, description="Useful for when you need to get a factual answer to a question.") | |
arxiv_tool = Tool(name="arxiv", func=search_arxiv, description="Useful for when you need to search for academic papers on a topic.") | |
# Buat Agen | |
agent = initialize_agent([wiki_tool, qa_tool, arxiv_tool], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) | |
# Streamlit App | |
st.title("Chatbot dengan Multiple Sources") | |
user_input = st.text_area("Masukkan pertanyaan Anda:", height=200) | |
if st.button("Tanya"): | |
response = agent.run(user_input) | |
st.write("Assistant:", response) | |
st.write("Fitur yang tersedia:") | |
st.write(wiki_tool.description) | |
st.write(qa_tool.description) | |
st.write(arxiv_tool.description) |