import streamlit as st from langchain.agents import Tool from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.llms import HuggingFacePipeline from transformers import pipeline import os from scholarly import scholarly # Set API key HuggingFace os.environ["HUGGING_FACE_API_KEY"] = os.environ.get("HF_TOKEN", None) # Definisi Tools def wikipedia_search(query): # Implementasi pencarian Wikipedia return "Hasil pencarian Wikipedia untuk query: " + query def answer_question(query): # Implementasi model Q&A menggunakan HuggingFace qa = pipeline('question-answering', model="deepset/roberta-base-squad2", tokenizer="deepset/roberta-base-squad2", device=0) result = qa({"question": query, "context": "Ini adalah contoh teks untuk menjawab pertanyaan."}) return result['answer'] def search_arxiv(query): # Implementasi pencarian ArXiv search_query = scholarly.search_pubs_query(query) result = next(search_query) return f"Judul: {result.bib['title']}\nPenulis: {', '.join(result.bib['author'])}\nDOI: {result.bib['doi']}" # Konfigurasi model LLM llm = HuggingFacePipeline( pipeline=pipeline("text-generation", model="gpt2"), model_kwargs={"temperature": 0.7, "max_length": 300, "top_k": 50, "top_p": 0.95, "num_return_sequences": 1} ) # Buat Tools wiki_tool = Tool(name="wikipedia", func=wikipedia_search, description="Useful for when you need to answer general questions about people, places, and things.") qa_tool = Tool(name="qa", func=answer_question, description="Useful for when you need to get a factual answer to a question.") arxiv_tool = Tool(name="arxiv", func=search_arxiv, description="Useful for when you need to search for academic papers on a topic.") # Buat Agen agent = initialize_agent([wiki_tool, qa_tool, arxiv_tool], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) # Streamlit App st.title("Chatbot dengan Multiple Sources") user_input = st.text_area("Masukkan pertanyaan Anda:", height=200) if st.button("Tanya"): response = agent.run(user_input) st.write("Assistant:", response) st.write("Fitur yang tersedia:") st.write(wiki_tool.description) st.write(qa_tool.description) st.write(arxiv_tool.description)