import os from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain.schema import SystemMessage import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline import nltk import json import pandas as pd # Download nltk stopwords nltk.download('stopwords') # Function to load the conversation history def load_conversation_history(file): with open(file, 'r') as f: return json.load(f) # Function to save the conversation history def save_conversation_history(history, file): with open(file, 'w') as f: json.dump(history, f) # Initialize conversation history conversation_history = [] if st.session_state.get('conversation_history'): conversation_history = st.session_state.conversation_history # Title st.title('Culture AI v.0.1') # Get the Hugging Face access token from the environment variable HF_TOKEN = os.getenv("HF_TOKEN") # Model selection model_name = st.selectbox('Choose a model:', [ 'meta-llama/Llama-3.2-11B-Vision-Instruct', 'speakleash/Bielik-11B-v2.3-Instruct', # Add your private model here ]) # Upload dataset dataset_file = st.file_uploader('Upload your dataset (CSV format)', type='csv') if dataset_file: df = pd.read_csv(dataset_file) # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, return_full_text=True) llm = HuggingFacePipeline(pipeline=pipe) # Chat interface st.write('## Chat') topic = st.text_input('Enter a topic for the conversation:', 'Machine Learning') prompt = ChatPromptTemplate.from_messages([ SystemMessage(content=f"Write a response related to the input topic in one paragraph"), HumanMessagePromptTemplate.from_template("```{topic}```"), ]) chain = prompt | llm if st.button('Generate Response'): output = chain.invoke({"topic": topic}) st.write(output.content) conversation_history.append({"user": topic, "assistant": output.content}) # Save conversation history if st.button('Save Conversation History'): save_conversation_history(conversation_history, 'conversation_history.json') st.success('Conversation history saved!') # Display conversation history st.write('## Conversation History') st.write(conversation_history) # Update session state for conversation history st.session_state.conversation_history = conversation_history