atharvapawar's picture
app - v1
6b8f15b
raw
history blame contribute delete
944 Bytes
# import gradio as gr
# def greet(name):
# return "Hello " + name + "!!"
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Define the model and tokenizer
model_name = "atharvapawar/securix_Llama-2-7B-Chat-GGML"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(user_input):
input_ids = tokenizer.encode(user_input, return_tensors="pt")
with torch.no_grad():
output = model.generate(input_ids)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
iface = gr.Interface(
fn=generate_response,
inputs=gr.inputs.Textbox(lines=2, label="Enter your question:"),
outputs=gr.outputs.Textbox(label="Generated Response:")
)
if __name__ == "__main__":
iface.launch()