Spaces:
Running
Running
File size: 4,676 Bytes
b881f30 d9ed521 b881f30 d9ed521 b881f30 d9ed521 b881f30 221dfe3 d9ed521 5b01054 221dfe3 b881f30 221dfe3 5b01054 221dfe3 b881f30 221dfe3 b881f30 221dfe3 b881f30 221dfe3 b881f30 221dfe3 b881f30 221dfe3 d9ed521 b881f30 221dfe3 d9ed521 b881f30 d9ed521 b881f30 d9ed521 b881f30 d9ed521 b881f30 d9ed521 89bc52a d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 89bc52a d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 b881f30 d9ed521 9d1a2a5 b881f30 d9ed521 89bc52a d9ed521 89bc52a 221dfe3 89bc52a d9ed521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline
st.markdown("# Homonuclear diatomics")
st.markdown("### Methods")
container = st.container(border=True)
methods = container.multiselect("MLIPs", ["MACE-MP", "Equiformer", "CHGNet", "MACE-OFF", "eSCN", "ALIGNN"], ["MACE-MP", "Equiformer", "CHGNet", "eSCN", "ALIGNN"])
methods += container.multiselect("DFT Methods", ["GPAW"], [])
st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=3)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {attr: getattr(pcolors.qualitative, attr) for attr in all_attributes if isinstance(getattr(pcolors.qualitative, attr), list)}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox(
"Color sequence",
options=palette_names, index=22
)
color_sequence = color_palettes[palette_name] # type: ignore
DATA_DIR = Path("mlip_arena/tasks/diatomics")
dfs = [pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json") for method in methods]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["name", "method"])
method_color_mapping = {method: color_sequence[i % len(color_sequence)] for i, method in enumerate(df["method"].unique())}
for i, symbol in enumerate(chemical_symbols[1:]):
if i % ncols == 0:
cols = st.columns(ncols)
rows = df[df["name"] == symbol + symbol]
if rows.empty:
continue
fig = make_subplots(specs=[[{"secondary_y": True}]])
elo, flo = float("inf"), float("inf")
for j, method in enumerate(rows["method"].unique()):
row = rows[rows["method"] == method].iloc[0]
rs = np.array(row["R"])
es = np.array(row["E"])
fs = np.array(row["F"])
rs = np.array(rs)
ind = np.argsort(rs)
es = np.array(es)
fs = np.array(fs)
rs = rs[ind]
es = es[ind]
if "GPAW" not in method:
es = es - es[-1]
else:
pass
if "GPAW" not in method:
fs = fs[ind]
if "GPAW" in method:
xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))
else:
xs = rs
if energy_plot:
if "GPAW" in method:
cs = CubicSpline(rs, es)
ys = cs(xs)
else:
ys = es
elo = min(elo, max(ys.min()*1.2, -15), -1)
fig.add_trace(
go.Scatter(
x=xs, y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=2,
),
name=method,
),
secondary_y=False,
)
if force_plot and "GPAW" not in method:
ys = fs
flo = min(flo, max(ys.min()*1.2, -50))
fig.add_trace(
go.Scatter(
x=xs, y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=1,
dash="dot",
),
name=method,
showlegend=not energy_plot,
),
secondary_y=True,
)
name = f"{symbol}-{symbol}"
fig.update_layout(
showlegend=True,
title_text=f"{name}",
title_x=0.5,
)
# Set x-axis title
fig.update_xaxes(title_text="Bond length [Å]")
# Set y-axes titles
if energy_plot:
fig.update_layout(
yaxis=dict(
title=dict(text="Energy [eV]"),
side="left",
range=[elo, 2*(abs(elo))],
)
)
if force_plot:
fig.update_layout(
yaxis2=dict(
title=dict(text="Force [eV/Å]"),
side="right",
range=[flo, 1.5*abs(flo)],
overlaying="y",
tickmode="sync",
),
)
cols[i % ncols].plotly_chart(fig, use_container_width=True, height=250)
|