File size: 4,676 Bytes
b881f30
 
 
d9ed521
 
 
b881f30
 
d9ed521
b881f30
 
d9ed521
b881f30
221dfe3
d9ed521
5b01054
221dfe3
b881f30
221dfe3
 
 
5b01054
221dfe3
b881f30
221dfe3
 
 
 
b881f30
221dfe3
 
b881f30
221dfe3
 
 
 
b881f30
221dfe3
b881f30
221dfe3
 
 
d9ed521
b881f30
221dfe3
 
d9ed521
b881f30
d9ed521
 
b881f30
d9ed521
b881f30
d9ed521
 
b881f30
d9ed521
 
89bc52a
d9ed521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221dfe3
 
 
 
d9ed521
221dfe3
 
 
 
 
 
 
d9ed521
 
221dfe3
 
 
 
 
d9ed521
221dfe3
d9ed521
 
 
 
 
 
221dfe3
d9ed521
 
 
 
 
 
 
221dfe3
 
d9ed521
221dfe3
89bc52a
d9ed521
 
 
 
 
221dfe3
d9ed521
 
 
 
221dfe3
d9ed521
 
 
 
221dfe3
d9ed521
 
 
221dfe3
d9ed521
b881f30
 
d9ed521
9d1a2a5
b881f30
d9ed521
 
89bc52a
 
 
 
 
 
 
 
 
d9ed521
89bc52a
 
 
 
 
221dfe3
89bc52a
 
 
 
 
d9ed521
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline

st.markdown("# Homonuclear diatomics")

st.markdown("### Methods")
container = st.container(border=True)
methods = container.multiselect("MLIPs", ["MACE-MP", "Equiformer", "CHGNet", "MACE-OFF", "eSCN", "ALIGNN"], ["MACE-MP", "Equiformer", "CHGNet", "eSCN", "ALIGNN"])
methods += container.multiselect("DFT Methods", ["GPAW"], [])

st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=3)

# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {attr: getattr(pcolors.qualitative, attr) for attr in all_attributes if isinstance(getattr(pcolors.qualitative, attr), list)}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox(
    "Color sequence",
    options=palette_names, index=22
)

color_sequence = color_palettes[palette_name] # type: ignore

DATA_DIR = Path("mlip_arena/tasks/diatomics")
dfs = [pd.read_json(DATA_DIR / method.lower() /  "homonuclear-diatomics.json") for method in methods]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["name", "method"])

method_color_mapping = {method: color_sequence[i % len(color_sequence)] for i, method in enumerate(df["method"].unique())}

for i, symbol in enumerate(chemical_symbols[1:]):

    if i % ncols == 0:
        cols = st.columns(ncols)

    rows = df[df["name"] == symbol + symbol]

    if rows.empty:
        continue

    fig = make_subplots(specs=[[{"secondary_y": True}]])

    elo, flo = float("inf"), float("inf")

    for j, method in enumerate(rows["method"].unique()):
        row = rows[rows["method"] == method].iloc[0]

        rs = np.array(row["R"])
        es = np.array(row["E"])
        fs = np.array(row["F"])

        rs = np.array(rs)
        ind = np.argsort(rs)
        es = np.array(es)
        fs = np.array(fs)

        rs = rs[ind]
        es = es[ind]
        if "GPAW" not in method:
            es = es - es[-1]
        else:
            pass

        if "GPAW" not in method:
            fs = fs[ind]

        if "GPAW" in method:
            xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))
        else:
            xs = rs

        if energy_plot:
            if "GPAW" in method:
                cs = CubicSpline(rs, es)
                ys = cs(xs)
            else:
                ys = es

            elo = min(elo, max(ys.min()*1.2, -15), -1)

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=method_color_mapping[method],
                        width=2,
                    ),
                    name=method,
                ),
                secondary_y=False,
            )

        if force_plot and "GPAW" not in method:
            ys = fs

            flo = min(flo, max(ys.min()*1.2, -50))

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=method_color_mapping[method],
                        width=1,
                        dash="dot",
                    ),
                    name=method,
                    showlegend=not energy_plot,
                ),
                secondary_y=True,
            )

    name = f"{symbol}-{symbol}"

    fig.update_layout(
        showlegend=True,
        title_text=f"{name}",
        title_x=0.5,
    )

    # Set x-axis title
    fig.update_xaxes(title_text="Bond length [Å]")

    # Set y-axes titles
    if energy_plot:

        fig.update_layout(
            yaxis=dict(
                title=dict(text="Energy [eV]"),
                side="left",
                range=[elo, 2*(abs(elo))],
            )
        )

    if force_plot:

        fig.update_layout(
            yaxis2=dict(
                title=dict(text="Force [eV/Å]"),
                side="right",
                range=[flo, 1.5*abs(flo)],
                overlaying="y",
                tickmode="sync",
            ),
        )

    cols[i % ncols].plotly_chart(fig, use_container_width=True, height=250)