Spaces:
Running
Running
File size: 5,548 Bytes
b881f30 d9ed521 b881f30 d9ed521 b881f30 af4a473 3eda6d3 606b930 9361457 3b3aaa9 606b930 b881f30 221dfe3 d9ed521 9361457 3b3aaa9 b881f30 221dfe3 5b01054 606b930 b881f30 221dfe3 9361457 221dfe3 b881f30 221dfe3 b881f30 9361457 b881f30 9361457 b881f30 221dfe3 9361457 0d1ce35 3b3aaa9 9361457 221dfe3 d9ed521 b881f30 9361457 221dfe3 8a5a7ef d9ed521 b881f30 d9ed521 b881f30 d9ed521 b881f30 d9ed521 89bc52a d9ed521 9361457 d9ed521 221dfe3 d9ed521 221dfe3 9361457 221dfe3 d9ed521 221dfe3 d9ed521 9361457 d9ed521 9361457 d9ed521 221dfe3 3b3aaa9 d9ed521 221dfe3 d9ed521 9361457 89bc52a d9ed521 9361457 d9ed521 221dfe3 3b3aaa9 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 221dfe3 d9ed521 b881f30 d9ed521 606b930 b881f30 d9ed521 89bc52a 9361457 89bc52a d9ed521 89bc52a 9361457 89bc52a 606b930 8a5a7ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline
from mlip_arena.models import REGISTRY
st.markdown(
"""
# Homonuclear Diatomics
Homonuclear diatomics are molecules composed of two atoms of the same element.
The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry.
"""
)
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
model
for model, metadata in REGISTRY.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
mlip_methods = container.multiselect(
"MLIPs",
valid_models,
["EquiformerV2(OC22)", "eSCN(OC20)", "CHGNet", "M3GNet", "MACE-MP(M)"],
)
dft_methods = container.multiselect("DFT Methods", ["GPAW"], [])
st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name] # type: ignore
DATA_DIR = Path("mlip_arena/tasks/diatomics")
if not mlip_methods and not dft_methods:
st.stop()
dfs = [
pd.read_json(DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json")
for method in mlip_methods
]
dfs.extend(
[
pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json")
for method in dft_methods
]
)
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["name", "method"])
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
# img_dir = Path('./images')
# img_dir.mkdir(exist_ok=True)
for i, symbol in enumerate(chemical_symbols[1:]):
if i % ncols == 0:
cols = st.columns(ncols)
rows = df[df["name"] == symbol + symbol]
if rows.empty:
continue
fig = make_subplots(specs=[[{"secondary_y": True}]])
elo, flo = float("inf"), float("inf")
for j, method in enumerate(rows["method"].unique()):
if method not in mlip_methods and method not in dft_methods:
continue
row = rows[rows["method"] == method].iloc[0]
rs = np.array(row["R"])
es = np.array(row["E"])
fs = np.array(row["F"])
rs = np.array(rs)
ind = np.argsort(rs)
es = np.array(es)
fs = np.array(fs)
rs = rs[ind]
es = es[ind]
if "GPAW" not in method:
es = es - es[-1]
else:
pass
if "GPAW" not in method:
fs = fs[ind]
if "GPAW" in method:
xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
else:
xs = rs
if energy_plot:
if "GPAW" in method:
cs = CubicSpline(rs, es)
ys = cs(xs)
else:
ys = es
elo = min(elo, max(ys.min() * 1.2, -15), -1)
fig.add_trace(
go.Scatter(
x=xs,
y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=3,
),
name=method,
),
secondary_y=False,
)
if force_plot and "GPAW" not in method:
ys = fs
flo = min(flo, max(ys.min() * 1.2, -50))
fig.add_trace(
go.Scatter(
x=xs,
y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=2,
dash="dashdot",
),
name=method,
showlegend=not energy_plot,
),
secondary_y=True,
)
name = f"{symbol}-{symbol}"
fig.update_layout(
showlegend=True,
title_text=f"{name}",
title_x=0.5,
)
# Set x-axis title
fig.update_xaxes(title_text="Distance [Å]")
# Set y-axes titles
if energy_plot:
fig.update_layout(
yaxis=dict(
title=dict(text="Energy [eV]"),
side="left",
range=[elo, 1.5 * (abs(elo))],
)
)
if force_plot:
fig.update_layout(
yaxis2=dict(
title=dict(text="Force [eV/Å]"),
side="right",
range=[flo, 1.0 * abs(flo)],
overlaying="y",
tickmode="sync",
),
)
cols[i % ncols].plotly_chart(fig, use_container_width=True)
# fig.write_image(format='svg', file=img_dir / f"{name}.svg")
|