File size: 9,103 Bytes
5225959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08ee4c09-7fb5-4ce1-a7a3-5c5c52a6d4d5",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from ase import Atoms, Atom\n",
    "from ase.io import read, write\n",
    "from ase.data import chemical_symbols, covalent_radii, vdw_alvarez\n",
    "from ase.parallel import paropen as open\n",
    "from gpaw import GPAW, PW, FermiDirac, LCAO\n",
    "from gpaw import Davidson\n",
    "from gpaw import Mixer, MixerSum, MixerDif\n",
    "from gpaw.directmin.etdm_lcao import LCAOETDM\n",
    "from gpaw.cdft.cdft import CDFT\n",
    "from pathlib import Path\n",
    "import os\n",
    "import numpy as np\n",
    "from pymatgen.core import Element\n",
    "from tqdm.auto import tqdm\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "90887faa-1601-4c4c-9c44-d16731471d7f",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "\n",
    "magnetism = 'NM'\n",
    "\n",
    "for symbol in tqdm(chemical_symbols):\n",
    "    \n",
    "    s = set([symbol])\n",
    "    \n",
    "    if 'X' in s:\n",
    "        continue\n",
    "        \n",
    "    try:\n",
    "        atom = Atom(symbol)\n",
    "        rmin = covalent_radii[atom.number] * 2 * 0.6\n",
    "        rvdw = vdw_alvarez.vdw_radii[atom.number] if atom.number < len(vdw_alvarez.vdw_radii) else np.nan \n",
    "        rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6\n",
    "        rstep = 0.2 #if rmin < 1 else 0.4\n",
    "\n",
    "        a = 2 * rmax\n",
    "\n",
    "        npts = int((rmax - rmin)/rstep)\n",
    "\n",
    "        rs = np.linspace(rmin, rmax, npts)\n",
    "        e = np.zeros_like(rs)\n",
    "\n",
    "        da = symbol + symbol\n",
    "\n",
    "        out_dir = Path(str(da + f\"_{magnetism}\"))\n",
    "\n",
    "        os.makedirs(out_dir, exist_ok=True)\n",
    "\n",
    "        skip = 0\n",
    "        \n",
    "        element = Element(symbol)\n",
    "        \n",
    "        try:\n",
    "            m = element.valence[1]\n",
    "            if element.valence == (0, 2):\n",
    "                m = 0\n",
    "        except:\n",
    "            m = 0\n",
    "            \n",
    "            \n",
    "        r = rs[0]\n",
    "        \n",
    "        positions = [\n",
    "            [a/2-r/2, a/2, a/2],\n",
    "            [a/2+r/2, a/2, a/2],\n",
    "        ]\n",
    "        \n",
    "        if magnetism == 'FM':\n",
    "            if m == 0:\n",
    "                continue\n",
    "            magmoms = [m, m]\n",
    "        elif magnetism == 'AFM':\n",
    "            if m == 0:\n",
    "                continue\n",
    "            magmoms = [m, -m]\n",
    "        elif magnetism == 'NM':\n",
    "            magmoms = [0, 0]\n",
    "            \n",
    "        traj_fpath = out_dir / \"traj.extxyz\"\n",
    "\n",
    "        if traj_fpath.exists():\n",
    "            traj = read(traj_fpath, index=\":\")\n",
    "            skip = len(traj)\n",
    "            atoms = traj[-1]\n",
    "        else:\n",
    "            # Create the unit cell with two atoms\n",
    "            atoms = Atoms(\n",
    "                da, \n",
    "                positions=positions,\n",
    "                magmoms=magmoms,\n",
    "                cell=[a, a+0.001, a+0.002], \n",
    "                pbc=True\n",
    "            )\n",
    "        \n",
    "        print(atoms)\n",
    "        \n",
    "        restart_fpath = out_dir / 'restart.gpw'\n",
    "\n",
    "        calc = GPAW(\n",
    "            mode=PW(1000),\n",
    "            xc='PBE',\n",
    "            spinpol=True,\n",
    "            # basis='dzp'\n",
    "            basis='szp(dzp)',\n",
    "            # h=0.25,\n",
    "            # nbands=0 if element.is_noble_gas else '110%',\n",
    "            hund=False,\n",
    "            mixer=MixerDif(0.01, 1, 1) if element.is_transition_metal else MixerDif(0.25, 3, 10),\n",
    "            eigensolver='cg', #'rmm-diis', #Davidson(3),  # This solver can parallelize over bands Davidson(3), #\n",
    "            occupations=FermiDirac(0.0, fixmagmom=False), # if not element.is_metal else FermiDirac(0.2, fixmagmom=False),\n",
    "            # eigensolver=LCAOETDM(),\n",
    "            #     # searchdir_algo={'name': 'l-bfgs-p', 'memory': 10}),\n",
    "            # occupations={'name': 'fixed-uniform'},\n",
    "            # mixer={'backend': 'no-mixing'},\n",
    "            # nbands='nao',\n",
    "            symmetry={'point_group': False},\n",
    "            txt=out_dir / 'out.txt',\n",
    "            convergence={\n",
    "                'eigenstates': 1e-5,\n",
    "                'density': 5e-3,\n",
    "                'energy': 5e-4,\n",
    "                # 'bands': 4\n",
    "            },\n",
    "            # {'energy': 0.0005,  # eV / electron\n",
    "            #  'density': 1.0e-4,  # electrons / electron\n",
    "            #  'eigenstates': 4.0e-8,  # eV^2 / electron\n",
    "            #  'bands': 'occupied'}\n",
    "        )\n",
    "        # calc.attach(calc.write, 10, restart_fpath, mode='all')\n",
    "\n",
    "        atoms.calc = calc\n",
    "        \n",
    "        # cdft = CDFT(calc=calc, atoms=atoms, spinspin_regions=      \n",
    "        # atoms.calc = cdft\n",
    "\n",
    "        for i, r in enumerate(tqdm(np.flip(rs))):\n",
    "\n",
    "            if i < skip:\n",
    "                continue\n",
    "\n",
    "            positions = [\n",
    "                [a/2-r/2, a/2, a/2],\n",
    "                [a/2+r/2, a/2, a/2],\n",
    "            ]\n",
    "            \n",
    "            # if i > 0:   \n",
    "            #     magmoms = atoms.get_magnetic_moments()\n",
    "                # m = min(abs(magmoms[0])*1.2, m)\n",
    "                # magmoms = magmoms*m/np.abs(magmoms)\n",
    "                \n",
    "            atoms.set_initial_magnetic_moments(magmoms)\n",
    "                \n",
    "            atoms.set_positions(positions)\n",
    "\n",
    "            e[i] = atoms.get_potential_energy()\n",
    "            \n",
    "            atoms.calc.results.update({\n",
    "                \"forces\": atoms.get_forces()\n",
    "            })\n",
    "\n",
    "            write(traj_fpath, atoms, append=\"a\")\n",
    "    except Exception as e:\n",
    "        print(e)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a0ac2c09-370b-4fdd-bf74-ea5c4ade0215",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "df = pd.DataFrame(columns=['name', 'method', 'R', 'E', 'F', 'S^2'])\n",
    "\n",
    "\n",
    "\n",
    "for symbol in tqdm(chemical_symbols):\n",
    "    \n",
    "    for magnetism in ['AFM', 'FM', 'NM']:\n",
    "    \n",
    "        da = symbol + symbol\n",
    "\n",
    "        # out_dir = Path(da)\n",
    "        out_dir = Path(str(da + f\"_{magnetism}\"))\n",
    "\n",
    "        traj_fpath = out_dir / \"traj.extxyz\"\n",
    "\n",
    "        if traj_fpath.exists():\n",
    "            traj = read(traj_fpath, index=\":\")\n",
    "        else:\n",
    "            continue\n",
    "\n",
    "        Rs, Es, Fs, S2s = [], [], [], []\n",
    "        for atoms in traj:\n",
    "\n",
    "            vec = atoms.positions[1] - atoms.positions[0]\n",
    "            r = np.linalg.norm(vec)\n",
    "            e = atoms.get_potential_energy()\n",
    "            # f = np.inner(vec/r, atoms.get_forces()[1])\n",
    "            # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))\n",
    "\n",
    "            Rs.append(r)\n",
    "            Es.append(e)\n",
    "            # Fs.append(f)\n",
    "            # S2s.append(s2)\n",
    "\n",
    "        data = {\n",
    "            'name': da,\n",
    "            'method': f'GGA-PBE (GPAW): {magnetism}',\n",
    "            'R': Rs,\n",
    "            'E': Es,\n",
    "            'F': Fs,\n",
    "            'S^2': S2s\n",
    "        }\n",
    "\n",
    "        df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n",
    "\n",
    "json_fpath = 'homonuclear-diatomics.json'\n",
    "\n",
    "df.to_json(json_fpath, orient='records')    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5d4a7312-a619-411f-9c6f-36c40cd47a34",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "mlip-arena",
   "language": "python",
   "name": "mlip-arena"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}