File size: 6,751 Bytes
7cbf186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3aaa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cbf186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import urllib
from typing import Literal

import torch
from alignn.ff.ff import AlignnAtomwiseCalculator, get_figshare_model_ff
from ase import Atoms
from chgnet.model.dynamics import CHGNetCalculator
from chgnet.model.model import CHGNet
from fairchem.core import OCPCalculator
from mace.calculators import MACECalculator


# Avoid circular import
def get_freer_device() -> torch.device:
    """Get the GPU with the most free memory, or use MPS if available.
    s
        Returns:
            torch.device: The selected GPU device or MPS.

        Raises:
            ValueError: If no GPU or MPS is available.
    """
    device_count = torch.cuda.device_count()
    if device_count > 0:
        # If CUDA GPUs are available, select the one with the most free memory
        mem_free = [
            torch.cuda.get_device_properties(i).total_memory
            - torch.cuda.memory_allocated(i)
            for i in range(device_count)
        ]
        free_gpu_index = mem_free.index(max(mem_free))
        device = torch.device(f"cuda:{free_gpu_index}")
        print(
            f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs"
        )
    elif torch.backends.mps.is_available():
        # If no CUDA GPUs are available but MPS is, use MPS
        print("No GPU available. Using MPS.")
        device = torch.device("mps")
    else:
        # Fallback to CPU if neither CUDA GPUs nor MPS are available
        print("No GPU or MPS available. Using CPU.")
        device = torch.device("cpu")

    return device


class MACE_MP_Medium(MACECalculator):
    def __init__(self, device=None, default_dtype="float32", **kwargs):
        checkpoint_url = "http://tinyurl.com/5yyxdm76"
        cache_dir = os.path.expanduser("~/.cache/mace")
        checkpoint_url_name = "".join(
            c for c in os.path.basename(checkpoint_url) if c.isalnum() or c in "_"
        )
        cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
        if not os.path.isfile(cached_model_path):
            os.makedirs(cache_dir, exist_ok=True)
            # download and save to disk
            print(f"Downloading MACE model from {checkpoint_url!r}")
            _, http_msg = urllib.request.urlretrieve(checkpoint_url, cached_model_path)
            if "Content-Type: text/html" in http_msg:
                raise RuntimeError(
                    f"Model download failed, please check the URL {checkpoint_url}"
                )
            print(f"Cached MACE model to {cached_model_path}")
        model = cached_model_path
        msg = f"Using Materials Project MACE for MACECalculator with {model}"
        print(msg)

        device = device or str(get_freer_device())

        super().__init__(
            model_paths=model, device=device, default_dtype=default_dtype, **kwargs
        )

class MACE_OFF_Medium(MACECalculator):
    def __init__(self, device=None, default_dtype="float32", **kwargs):
        checkpoint_url = "https://github.com/ACEsuit/mace-off/raw/main/mace_off23/MACE-OFF23_medium.model?raw=true"
        cache_dir = os.path.expanduser("~/.cache/mace")
        checkpoint_url_name = "".join(
            c for c in os.path.basename(checkpoint_url) if c.isalnum() or c in "_"
        )
        cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
        if not os.path.isfile(cached_model_path):
            os.makedirs(cache_dir, exist_ok=True)
            # download and save to disk
            print(f"Downloading MACE model from {checkpoint_url!r}")
            _, http_msg = urllib.request.urlretrieve(checkpoint_url, cached_model_path)
            if "Content-Type: text/html" in http_msg:
                raise RuntimeError(
                    f"Model download failed, please check the URL {checkpoint_url}"
                )
            print(f"Cached MACE model to {cached_model_path}")
        model = cached_model_path
        msg = f"Using Materials Project MACE for MACECalculator with {model}"
        print(msg)

        device = device or str(get_freer_device())

        super().__init__(
            model_paths=model, device=device, default_dtype=default_dtype, **kwargs
        )


class CHGNet(CHGNetCalculator):
    def __init__(
        self,
        model: CHGNet | None = None,
        use_device: str | None = None,
        stress_weight: float | None = 1 / 160.21766208,
        on_isolated_atoms: Literal["ignore", "warn", "error"] = "warn",
        **kwargs,
    ) -> None:
        use_device = use_device or str(get_freer_device())
        super().__init__(
            model=model,
            use_device=use_device,
            stress_weight=stress_weight,
            on_isolated_atoms=on_isolated_atoms,
            **kwargs,
        )

    def calculate(
        self,
        atoms: Atoms | None = None,
        properties: list | None = None,
        system_changes: list | None = None,
    ) -> None:
        super().calculate(atoms, properties, system_changes)

        # for ase.io.write compatibility
        self.results.pop("crystal_fea", None)


class EquiformerV2(OCPCalculator):
    def __init__(
        self,
        model_name="EquiformerV2-lE4-lF100-S2EFS-OC22",
        local_cache="/tmp/ocp/",
        cpu=False,
        seed=0,
        **kwargs,
    ) -> None:
        super().__init__(
            model_name=model_name,
            local_cache=local_cache,
            cpu=cpu,
            seed=0,
            **kwargs,
        )

    def calculate(self, atoms: Atoms, properties, system_changes) -> None:
        super().calculate(atoms, properties, system_changes)

        self.results.update(
            force=atoms.get_forces(),
        )


class eSCN(OCPCalculator):
    def __init__(
        self,
        model_name="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD",
        local_cache="/tmp/ocp/",
        cpu=False,
        seed=0,
        **kwargs,
    ) -> None:
        super().__init__(
            model_name=model_name,
            local_cache=local_cache,
            cpu=cpu,
            seed=0,
            **kwargs,
        )

    def calculate(self, atoms: Atoms, properties, system_changes) -> None:
        super().calculate(atoms, properties, system_changes)

        self.results.update(
            force=atoms.get_forces(),
        )


class ALIGNN(AlignnAtomwiseCalculator):
    def __init__(self, dir_path: str = "/tmp/alignn/", device=None, **kwargs) -> None:
        model_path = get_figshare_model_ff(dir_path=dir_path)
        device = device or get_freer_device()
        super().__init__(model_path=model_path, device=device, **kwargs)

    def calculate(self, atoms, properties=None, system_changes=None):
        super().calculate(atoms, properties, system_changes)