Spaces:
Running
Running
File size: 8,165 Bytes
7cbf186 8a5a7ef 7cbf186 7c36d54 7cbf186 8a5a7ef 7cbf186 3b3aaa9 8a5a7ef 3b3aaa9 7cbf186 8a5a7ef 7cbf186 03db5cf 7cbf186 7c36d54 7cbf186 8a5a7ef 7c36d54 8a5a7ef 7c36d54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import urllib
from typing import Literal
import matgl
import requests
import torch
from alignn.ff.ff import AlignnAtomwiseCalculator, get_figshare_model_ff, default_path
from ase import Atoms
from chgnet.model.dynamics import CHGNetCalculator
from chgnet.model.model import CHGNet
from fairchem.core import OCPCalculator
from mace.calculators import MACECalculator
from matgl.ext.ase import PESCalculator
from sevenn.sevennet_calculator import SevenNetCalculator
# Avoid circular import
def get_freer_device() -> torch.device:
"""Get the GPU with the most free memory, or use MPS if available.
s
Returns:
torch.device: The selected GPU device or MPS.
Raises:
ValueError: If no GPU or MPS is available.
"""
device_count = torch.cuda.device_count()
if device_count > 0:
# If CUDA GPUs are available, select the one with the most free memory
mem_free = [
torch.cuda.get_device_properties(i).total_memory
- torch.cuda.memory_allocated(i)
for i in range(device_count)
]
free_gpu_index = mem_free.index(max(mem_free))
device = torch.device(f"cuda:{free_gpu_index}")
print(
f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs"
)
elif torch.backends.mps.is_available():
# If no CUDA GPUs are available but MPS is, use MPS
print("No GPU available. Using MPS.")
device = torch.device("mps")
else:
# Fallback to CPU if neither CUDA GPUs nor MPS are available
print("No GPU or MPS available. Using CPU.")
device = torch.device("cpu")
return device
class MACE_MP_Medium(MACECalculator):
def __init__(self, device=None, default_dtype="float32", **kwargs):
checkpoint_url = "http://tinyurl.com/5yyxdm76"
cache_dir = os.path.expanduser("~/.cache/mace")
checkpoint_url_name = "".join(
c for c in os.path.basename(checkpoint_url) if c.isalnum() or c in "_"
)
cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
if not os.path.isfile(cached_model_path):
os.makedirs(cache_dir, exist_ok=True)
# download and save to disk
print(f"Downloading MACE model from {checkpoint_url!r}")
_, http_msg = urllib.request.urlretrieve(checkpoint_url, cached_model_path)
if "Content-Type: text/html" in http_msg:
raise RuntimeError(
f"Model download failed, please check the URL {checkpoint_url}"
)
print(f"Cached MACE model to {cached_model_path}")
model = cached_model_path
msg = f"Using Materials Project MACE for MACECalculator with {model}"
print(msg)
device = device or str(get_freer_device())
super().__init__(
model_paths=model, device=device, default_dtype=default_dtype, **kwargs
)
class MACE_OFF_Medium(MACECalculator):
def __init__(self, device=None, default_dtype="float32", **kwargs):
checkpoint_url = "https://github.com/ACEsuit/mace-off/raw/main/mace_off23/MACE-OFF23_medium.model?raw=true"
cache_dir = os.path.expanduser("~/.cache/mace")
checkpoint_url_name = "".join(
c for c in os.path.basename(checkpoint_url) if c.isalnum() or c in "_"
)
cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
if not os.path.isfile(cached_model_path):
os.makedirs(cache_dir, exist_ok=True)
# download and save to disk
print(f"Downloading MACE model from {checkpoint_url!r}")
_, http_msg = urllib.request.urlretrieve(checkpoint_url, cached_model_path)
if "Content-Type: text/html" in http_msg:
raise RuntimeError(
f"Model download failed, please check the URL {checkpoint_url}"
)
print(f"Cached MACE model to {cached_model_path}")
model = cached_model_path
msg = f"Using Materials Project MACE for MACECalculator with {model}"
print(msg)
device = device or str(get_freer_device())
super().__init__(
model_paths=model, device=device, default_dtype=default_dtype, **kwargs
)
class CHGNet(CHGNetCalculator):
def __init__(
self,
model: CHGNet | None = None,
use_device: str | None = None,
stress_weight: float | None = 1 / 160.21766208,
on_isolated_atoms: Literal["ignore", "warn", "error"] = "warn",
**kwargs,
) -> None:
use_device = use_device or str(get_freer_device())
super().__init__(
model=model,
use_device=use_device,
stress_weight=stress_weight,
on_isolated_atoms=on_isolated_atoms,
**kwargs,
)
def calculate(
self,
atoms: Atoms | None = None,
properties: list | None = None,
system_changes: list | None = None,
) -> None:
super().calculate(atoms, properties, system_changes)
# for ase.io.write compatibility
self.results.pop("crystal_fea", None)
class M3GNet(PESCalculator):
def __init__(
self,
state_attr: torch.Tensor | None = None,
stress_weight: float = 1.0,
**kwargs,
) -> None:
potential = matgl.load_model("M3GNet-MP-2021.2.8-PES")
super().__init__(potential, state_attr, stress_weight, **kwargs)
class EquiformerV2(OCPCalculator):
def __init__(
self,
model_name="EquiformerV2-lE4-lF100-S2EFS-OC22",
local_cache="/tmp/ocp/",
cpu=False,
seed=0,
**kwargs,
) -> None:
super().__init__(
model_name=model_name,
local_cache=local_cache,
cpu=cpu,
seed=0,
**kwargs,
)
def calculate(self, atoms: Atoms, properties, system_changes) -> None:
super().calculate(atoms, properties, system_changes)
self.results.update(
force=atoms.get_forces(),
)
class EquiformerV2OC20(OCPCalculator):
def __init__(
self,
model_name="EquiformerV2-31M-S2EF-OC20-All+MD",
local_cache="/tmp/ocp/",
cpu=False,
seed=0,
**kwargs,
) -> None:
super().__init__(
model_name=model_name,
local_cache=local_cache,
cpu=cpu,
seed=0,
**kwargs,
)
class eSCN(OCPCalculator):
def __init__(
self,
model_name="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD",
local_cache="/tmp/ocp/",
cpu=False,
seed=0,
**kwargs,
) -> None:
super().__init__(
model_name=model_name,
local_cache=local_cache,
cpu=cpu,
seed=0,
**kwargs,
)
def calculate(self, atoms: Atoms, properties, system_changes) -> None:
super().calculate(atoms, properties, system_changes)
self.results.update(
force=atoms.get_forces(),
)
class ALIGNN(AlignnAtomwiseCalculator):
def __init__(self, dir_path: str = "/tmp/alignn/", device=None, **kwargs) -> None:
model_path = get_figshare_model_ff(dir_path=dir_path)
device = device or get_freer_device()
super().__init__(path=dir_path, device=device, **kwargs)
def calculate(self, atoms, properties=None, system_changes=None):
super().calculate(atoms, properties, system_changes)
class SevenNet(SevenNetCalculator):
def __init__(self, device=None, **kwargs):
# url = (
# "https://github.com/MDIL-SNU/SevenNet/raw/main/pretrained_potentials"
# "/SevenNet_0__11July2024/checkpoint_sevennet_0.pth"
# )
# ckpt_cache = "/tmp/sevennet_checkpoint.pth.tar"
# response = requests.get(url)
# with open(ckpt_cache, mode="wb") as file:
# file.write(response.content)
device = device or get_freer_device()
super().__init__("7net-0", device=device, **kwargs)
|