Spaces:
Running
Running
File size: 3,646 Bytes
e6cac5c 17bfe96 e6cac5c 17bfe96 e6cac5c f0fdb88 e6cac5c 17bfe96 e6cac5c 17bfe96 e6cac5c 17bfe96 e6cac5c f0fdb88 e6cac5c 17bfe96 df0fa6f 17bfe96 df0fa6f 17bfe96 df0fa6f 17bfe96 df0fa6f 17bfe96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
from pathlib import Path
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from mlip_arena.models import REGISTRY
DATA_DIR = Path("mlip_arena/tasks/combustion")
st.markdown("""
# Combustion
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
models = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "M3GNet", "EquiformerV2(OC22)", "SevenNet"])
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
families = [REGISTRY[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "hydrogen.json")
for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
# Number of products
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timesteps"],
y=row["nproducts"],
mode="lines",
name=method,
line=dict(color=method_color_mapping[method]),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timesteps",
yaxis_title="Number of water molecules",
)
st.plotly_chart(fig)
# tempearture
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timesteps"],
y=row["temperatures"],
mode="markers",
name=method,
line=dict(color=method_color_mapping[method]),
showlegend=True,
),
)
target_steps = df["target_steps"].iloc[0]
fig.add_trace(
go.Line(
x=[0, target_steps/3, target_steps/3*2, target_steps],
y=[300, 3000, 3000, 300],
mode="lines",
name="Target",
line=dict(
dash="dash",
),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timesteps",
yaxis_title="Temperatures",
yaxis2=dict(
title="Product Percentage (%)",
overlaying="y",
side="right",
range=[0, 100],
tickmode="sync"
)
# template="plotly_dark",
)
st.plotly_chart(fig)
# MD runtime speed
fig = go.Figure()
df = df.sort_values("steps_per_second", ascending=True)
fig.add_trace(
go.Bar(
x=df["steps_per_second"],
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
)
)
fig.update_layout(
title="MD runtime speed (on single A100 GPU)",
xaxis_title="Steps per second",
yaxis_title="Method",
)
st.plotly_chart(fig)
|