File size: 3,646 Bytes
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17bfe96
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17bfe96
e6cac5c
 
 
 
 
 
 
f0fdb88
e6cac5c
 
 
 
 
 
17bfe96
e6cac5c
 
 
 
 
 
 
 
 
17bfe96
e6cac5c
 
 
 
 
 
 
 
 
 
 
17bfe96
e6cac5c
 
 
 
 
 
 
 
 
f0fdb88
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
17bfe96
 
 
 
 
df0fa6f
 
17bfe96
 
df0fa6f
 
17bfe96
df0fa6f
 
17bfe96
 
 
 
 
df0fa6f
 
17bfe96
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from pathlib import Path

import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st

from mlip_arena.models import REGISTRY

DATA_DIR = Path("mlip_arena/tasks/combustion")


st.markdown("""
# Combustion
""")

st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]

models = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "M3GNet", "EquiformerV2(OC22)", "SevenNet"])

st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)

color_sequence = color_palettes[palette_name]

if not models:
    st.stop()

families = [REGISTRY[str(model)]["family"] for model in models]

dfs = [
    pd.read_json(DATA_DIR / family.lower() / "hydrogen.json")
    for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])

method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df["method"].unique())
}

###

# Number of products
fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timesteps"],
            y=row["nproducts"],
            mode="lines",
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

fig.update_layout(
    title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timesteps",
    yaxis_title="Number of water molecules",
)

st.plotly_chart(fig)

# tempearture

fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timesteps"],
            y=row["temperatures"],
            mode="markers",
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

target_steps = df["target_steps"].iloc[0]
fig.add_trace(
    go.Line(
        x=[0, target_steps/3, target_steps/3*2, target_steps],
        y=[300, 3000, 3000, 300],
        mode="lines",
        name="Target",
        line=dict(
            dash="dash",
        ),
        showlegend=True,
    ),
)

fig.update_layout(
    title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timesteps",
    yaxis_title="Temperatures",
    yaxis2=dict(
        title="Product Percentage (%)",
        overlaying="y",
        side="right",
        range=[0, 100],
        tickmode="sync"
    )
    # template="plotly_dark",
)

st.plotly_chart(fig)

# MD runtime speed

fig = go.Figure()

df = df.sort_values("steps_per_second", ascending=True)

fig.add_trace(
    go.Bar(
        x=df["steps_per_second"],
        y=df["method"],
        opacity=0.75,
        orientation="h",
        marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
    )
)

fig.update_layout(
    title="MD runtime speed (on single A100 GPU)",
    xaxis_title="Steps per second",
    yaxis_title="Method",
)

st.plotly_chart(fig)