Spaces:
Running
Running
File size: 2,678 Bytes
3b3aaa9 49d0cfc b3722a8 d390139 b3722a8 e473a42 49d0cfc d390139 d72faca d390139 3b3aaa9 056d8d3 49d0cfc 0d1ce35 49d0cfc 7cbf186 2d8bda8 7cbf186 2d8bda8 0d1ce35 7cbf186 2d8bda8 49d0cfc 7cbf186 2d8bda8 7cbf186 49d0cfc 7cbf186 0d1ce35 7cbf186 2d8bda8 d390139 49d0cfc 0d1ce35 49d0cfc d390139 49d0cfc d390139 49d0cfc d390139 49d0cfc d390139 49d0cfc d390139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
from __future__ import annotations
from pathlib import Path
import torch
import yaml
from ase import Atoms
from ase.calculators.calculator import Calculator, all_changes
from huggingface_hub import PyTorchModelHubMixin
from torch import nn
# from torch_geometric.data import Data
with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f:
REGISTRY = yaml.safe_load(f)
class MLIP(
nn.Module,
PyTorchModelHubMixin,
tags=["atomistic-simulation", "MLIP"],
):
def __init__(self, model: nn.Module) -> None:
super().__init__()
self.model = model
def forward(self, x):
return self.model(x)
class MLIPCalculator(MLIP, Calculator):
name: str
implemented_properties: list[str] = ["energy", "forces", "stress"]
def __init__(
self,
model,
# ASE Calculator
restart=None,
atoms=None,
directory=".",
calculator_kwargs: dict = {},
):
MLIP.__init__(self, model=model) # Initialize MLIP part
Calculator.__init__(
self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs
) # Initialize ASE Calculator part
# Additional initialization if needed
# self.name: str = self.__class__.__name__
# self.device = device or torch.device(
# "cuda" if torch.cuda.is_available() else "cpu"
# )
# self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device)
# self.implemented_properties = ["energy", "forces", "stress"]
def calculate(
self,
atoms: Atoms,
properties: list[str],
system_changes: list = all_changes,
):
"""Calculate energies and forces for the given Atoms object"""
super().calculate(atoms, properties, system_changes)
output = self.forward(atoms)
self.results = {}
if "energy" in properties:
self.results["energy"] = output["energy"].squeeze().item()
if "forces" in properties:
self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy()
if "stress" in properties:
self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy()
def forward(self, x: Atoms) -> dict[str, torch.Tensor]:
"""Implement data conversion, graph creation, and model forward pass
Example implementation:
1. Use `ase.neighborlist.NeighborList` to get neighbor list
2. Create `torch_geometric.data.Data` object and copy the data
3. Pass the `Data` object to the model and return the output
"""
raise NotImplementedError
|