Spaces:
Running
Running
File size: 7,323 Bytes
3eda6d3 0d1ce35 3eda6d3 3b3aaa9 3eda6d3 0d1ce35 3eda6d3 3b3aaa9 606b930 3b3aaa9 bd9f7b0 3b3aaa9 3eda6d3 3b3aaa9 c745add 0d1ce35 606b930 0d1ce35 606b930 0d1ce35 f7e9143 0d1ce35 f7e9143 0d1ce35 606b930 3eda6d3 606b930 3b3aaa9 606b930 3b3aaa9 606b930 3b3aaa9 606b930 3b3aaa9 606b930 3b3aaa9 606b930 3b3aaa9 606b930 ba1879f 3b3aaa9 f7e9143 3b3aaa9 f7e9143 3b3aaa9 f7e9143 3b3aaa9 f7e9143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from scipy.optimize import curve_fit
from mlip_arena.models import REGISTRY
DATA_DIR = Path("mlip_arena/tasks/stability")
st.markdown("""
# High Pressure Stability
Stable and accurate molecular dynamics (MD) simulations are important for understanding the properties of matters.
However, many MLIPs have unphysical potential energy surface (PES) at the short-range interatomic distances or
under many-body effect. These are often manifested as softened repulsion and hole in the PES and can lead to incorrect
and sampling of the phase space.
Here, we analyze the stability of the MD simulations under high pressure conditions by gradually increasing the pressure
from 0 to 1000 GPa at 300K until the system crashes or completes 100 ps trajectory. This benchmark also explores faster the far-from-equilibrium
dynamics of the system and the "durability" of the MLIPs under extreme conditions.
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
models = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "ORB", "SevenNet"])
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
@st.cache_data
def get_data(models):
families = [REGISTRY[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json")
for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"])
return df
df = get_data(models)
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
# Determine the bin edges for the entire dataset to keep them consistent across groups
# bins = np.histogram_bin_edges(df['total_steps'], bins=10)
max_steps = df["total_steps"].max()
max_target_steps = df["target_steps"].max()
bins = np.append(np.arange(0, max_steps + 1, max_steps // 10), max_target_steps)
bin_labels = [f"{bins[i]}-{bins[i+1]}" for i in range(len(bins)-1)]
num_bins = len(bin_labels)
colormap = px.colors.sequential.Darkmint_r
indices = np.linspace(0, len(colormap) - 1, num_bins, dtype=int)
bin_colors = [colormap[i] for i in indices]
# bin_colors[-1] = px.colors.sequential.Greens[-1]
# Initialize a dictionary to hold the counts for each method and bin range
# counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
# Populate the dictionary with counts
for method, group in df.groupby("method"):
counts, _ = np.histogram(group["total_steps"], bins=bins)
counts_per_method[method] = counts
# Sort the dictionary by the percentage of the last bin
counts_per_method = {k: v for k, v in sorted(counts_per_method.items(), key=lambda item: item[1][-1]/sum(item[1]))}
count_or_percetange = st.toggle("show counts", False)
@st.experimental_fragment()
def plot_md_steps(counts_per_method, count_or_percetange):
# Create a figure
fig = go.Figure()
# Add a bar for each bin range across all methods
for i, bin_label in enumerate(bin_labels):
for method, counts in counts_per_method.items():
fig.add_trace(go.Bar(
# name=method, # This will be the legend entry
x=[counts[i]/counts.sum()*100] if not count_or_percetange else [counts[i]],
y=[method], # Method as the y-axis category
# name=bin_label,
orientation="h", # Horizontal bars
marker=dict(
color=bin_colors[i],
line=dict(color="rgb(248, 248, 249)", width=1)
),
text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%",
width=0.5
))
# Update the layout to stack the bars
fig.update_layout(
barmode="stack", # Stack the bars
title="Total MD steps (before crash or completion)",
xaxis_title="Percentage (%)" if not count_or_percetange else "Count",
yaxis_title="Method",
showlegend=False
)
# bins = np.linspace(0, 0.9, 10)
# for method, data in df.groupby("method"):
# # print(method, data)
# counts, bins = np.histogram(data['total_steps'])
# bin_labels = [f"{int(bins[i])}-{int(bins[i+1])}" for i in range(len(bins)-1)]
# # Create a horizontal bar chart
# fig = go.Figure(go.Bar(
# x=[counts[i]], # Count for this bin
# y=[method], # Method as the y-axis category
# # x=counts, # Bar lengths
# # y=bin_labels, # Bin labels as y-tick labels
# orientation='h' # Horizontal bars
# ))
# # Update layout for clarity
# fig.update_layout(
# title="Histogram of Total Steps",
# xaxis_title="Count",
# yaxis_title="Total Steps Range"
# )
st.plotly_chart(fig)
plot_md_steps(counts_per_method, count_or_percetange)
###
# st.markdown("""
# ## Runtime Analysis
# """)
def func(x, a, n):
return a * x ** (-n)
@st.experimental_fragment()
def plot_speed(df, method_color_mapping):
fig = px.scatter(
df,
x="natoms",
y="steps_per_second",
color="method",
size="total_steps",
hover_data=["material_id", "formula"],
color_discrete_map=method_color_mapping,
# trendline="ols",
# trendline_options=dict(log_x=True),
log_x=True,
# log_y=True,
# range_y=[1, 1e2],
range_x=[df["natoms"].min()*0.9, df["natoms"].max()*1.1],
# range_x=[1e3, 1e2],
title="Inference speed (on single A100 GPU)",
labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
)
x = np.linspace(df["natoms"].min(), df["natoms"].max(), 100)
for method, data in df.groupby("method"):
data.dropna(subset=["steps_per_second"], inplace=True)
popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"])
fig.add_trace(go.Scatter(
x=x,
y=func(x, *popt),
mode="lines",
# name='Fit',
line=dict(color=method_color_mapping[method], width=3),
showlegend=False,
name=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
))
st.plotly_chart(fig)
plot_speed(df, method_color_mapping)
|