Spaces:
Running
Running
File size: 2,698 Bytes
b3722a8 49d0cfc b3722a8 d390139 b3722a8 e473a42 49d0cfc d390139 b3722a8 d390139 49d0cfc 2d8bda8 ee784cf 2d8bda8 49d0cfc 2d8bda8 ee784cf 2d8bda8 49d0cfc 2d8bda8 49d0cfc 2d8bda8 d390139 49d0cfc d390139 49d0cfc d390139 49d0cfc d390139 49d0cfc d390139 49d0cfc d390139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import os
from pathlib import Path
import torch
import yaml
from ase import Atoms
from ase.calculators.calculator import Calculator, all_changes
from huggingface_hub import PyTorchModelHubMixin
from torch import nn
from torch_geometric.data import Data
with open(os.path.join(os.path.dirname(__file__), "registry.yaml")) as f:
REGISTRY = yaml.load(f, Loader=yaml.FullLoader)
class MLIP(
nn.Module,
PyTorchModelHubMixin,
tags=["atomistic-simulation", "MLIP"],
):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
class ModuleMLIP(MLIP):
def __init__(self, model: nn.Module, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.add_module("model", model)
def forward(self, x):
print("Forwarding...")
out = self.model(x)
print("Forwarded!")
return out
class MLIPCalculator(Calculator):
name: str
# device: torch.device
# model: MLIP
implemented_properties: list[str] = ["energy", "forces", "stress"]
def __init__(
self,
# ASE Calculator
restart=None,
atoms=None,
directory=".",
**kwargs,
):
super().__init__(restart=restart, atoms=atoms, directory=directory, **kwargs)
# self.name: str = self.__class__.__name__
# self.device = device or torch.device(
# "cuda" if torch.cuda.is_available() else "cpu"
# )
# self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device)
# self.implemented_properties = ["energy", "forces", "stress"]
def calculate(
self, atoms: Atoms, properties: list[str], system_changes: list = all_changes
):
"""Calculate energies and forces for the given Atoms object"""
super().calculate(atoms, properties, system_changes)
output = self.forward(atoms)
self.results = {}
if "energy" in properties:
self.results["energy"] = output["energy"].squeeze().item()
if "forces" in properties:
self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy()
if "stress" in properties:
self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy()
def forward(self, x: Atoms) -> dict[str, torch.Tensor]:
"""Implement data conversion, graph creation, and model forward pass
Example implementation:
1. Use `ase.neighborlist.NeighborList` to get neighbor list
2. Create `torch_geometric.data.Data` object and copy the data
3. Pass the `Data` object to the model and return the output
"""
raise NotImplementedError
|