File size: 3,801 Bytes
f9d3b3b
 
 
 
7dfb0b7
f9d3b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1bfb
 
f9d3b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfb0b7
f9d3b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfb0b7
 
f9d3b3b
 
 
 
 
d937c80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from pathlib import Path

import numpy as np
import pandas as pd
import streamlit as st

from mlip_arena.models import REGISTRY as MODELS

valid_models = [
    model
    for model, metadata in MODELS.items()
    if Path(__file__).stem in metadata.get("gpu-tasks", [])
]

DATA_DIR = Path("mlip_arena/tasks/diatomics")

dfs = [
    pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
    for model in valid_models
]
df = pd.concat(dfs, ignore_index=True)

table = pd.DataFrame()

for model in valid_models:
    rows = df[df["method"] == model]
    metadata = MODELS.get(model, {})

    new_row = {
        "Model": model,
        "Conservation deviation [eV/Å]": rows["conservation-deviation"].mean(),
        "Spearman's coeff. (Energy - repulsion)": rows[
            "spearman-repulsion-energy"
        ].mean(),
        "Spearman's coeff. (Force - descending)": rows[
            "spearman-descending-force"
        ].mean(),
        "Tortuosity": rows["tortuosity"].mean(),
        "Energy jump [eV]": rows["energy-jump"].mean(),
        "Force flips": rows["force-flip-times"].mean(),
        "Spearman's coeff. (Energy - attraction)": rows[
            "spearman-attraction-energy"
        ].mean(),
        "Spearman's coeff. (Force - ascending)": rows[
            "spearman-ascending-force"
        ].mean(),
    }

    table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)

table.set_index("Model", inplace=True)

table.sort_values("Conservation deviation [eV/Å]", ascending=True, inplace=True)
table["Rank"] = np.argsort(table["Conservation deviation [eV/Å]"].to_numpy())

table.sort_values(
    "Spearman's coeff. (Energy - repulsion)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (Energy - repulsion)"].to_numpy())

table.sort_values(
    "Spearman's coeff. (Force - descending)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (Force - descending)"].to_numpy())

table.sort_values("Tortuosity", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Tortuosity"].to_numpy())

table.sort_values("Energy jump [eV]", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy())

table.sort_values("Force flips", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Force flips"].to_numpy())

table["Rank"] += 1

table.sort_values("Rank", ascending=True, inplace=True)

table["Rank aggr."] = table["Rank"]

table["Rank"] = np.argsort(table["Rank"].to_numpy()) + 1

# table.drop(columns=["rank"], inplace=True)
# table = table.rename(columns={"Rank": "Rank Aggr."})

table = table.reindex(
    columns=[
        "Rank",
        "Rank aggr.",
        "Conservation deviation [eV/Å]",
        "Spearman's coeff. (Energy - repulsion)",
        "Spearman's coeff. (Force - descending)",
        "Tortuosity",
        "Energy jump [eV]",
        "Force flips",
        "Spearman's coeff. (Energy - attraction)",
        "Spearman's coeff. (Force - ascending)",
    ]
)

s = (
    table.style.background_gradient(
        cmap="viridis_r",
        subset=["Conservation deviation [eV/Å]"],
        gmap=np.log(table["Conservation deviation [eV/Å]"].to_numpy()),
    )
    .background_gradient(
        cmap="Reds",
        subset=[
            "Spearman's coeff. (Energy - repulsion)",
            "Spearman's coeff. (Force - descending)",
        ],
        # vmin=-1, vmax=-0.5
    )
    .background_gradient(
        cmap="RdPu",
        subset=["Tortuosity", "Energy jump [eV]", "Force flips"],
    )
    .background_gradient(
        cmap="Blues",
        subset=["Rank", "Rank aggr."],
    )
)


def render():
    st.dataframe(
        s,
        use_container_width=True,
    )
    # return table