Spaces:
Running
Running
File size: 7,978 Bytes
3eda6d3 0d1ce35 3eda6d3 3b3aaa9 3eda6d3 0d1ce35 3eda6d3 3b3aaa9 606b930 3b3aaa9 22f0dbc 3b3aaa9 22f0dbc 3b3aaa9 3eda6d3 22f0dbc 3b3aaa9 22f0dbc 0d1ce35 606b930 0d1ce35 606b930 0d1ce35 22f0dbc f7e9143 22f0dbc f7e9143 0d1ce35 606b930 3eda6d3 606b930 3b3aaa9 606b930 3b3aaa9 22f0dbc 606b930 22f0dbc 606b930 3b3aaa9 606b930 3b3aaa9 606b930 3b3aaa9 606b930 ba1879f 22f0dbc ba1879f 3b3aaa9 22f0dbc f7e9143 22f0dbc f7e9143 22f0dbc f7e9143 22f0dbc f7e9143 3b3aaa9 22f0dbc 3b3aaa9 22f0dbc 3b3aaa9 22f0dbc f7e9143 22f0dbc f7e9143 22f0dbc f7e9143 22f0dbc 3b3aaa9 f7e9143 3b3aaa9 f7e9143 22f0dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from scipy.optimize import curve_fit
from mlip_arena.models import REGISTRY
DATA_DIR = Path("mlip_arena/tasks/stability")
st.markdown("""
# High Pressure Stability
Stable and accurate molecular dynamics (MD) simulations are important for understanding the properties of matters.
However, many MLIPs have unphysical potential energy surface (PES) at the short-range interatomic distances or under many-body effect. These are often manifested as softened repulsion and hole in the PES and can lead to incorrect and sampling of the phase space.
Here, we analyze the stability of the MD simulations under high pressure conditions by gradually increasing the pressure from 0 to 1000 GPa at 300K until the system crashes or completes 100 ps trajectory. This benchmark also explores faster the far-from-equilibrium dynamics of the system and the "durability" of the MLIPs under extreme conditions.
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
model
for model, metadata in REGISTRY.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
models = container.multiselect(
"MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "ORB", "SevenNet"]
)
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
@st.cache_data
def get_data(models):
families = [REGISTRY[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json")
for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"])
return df
df = get_data(models)
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
# Determine the bin edges for the entire dataset to keep them consistent across groups
# bins = np.histogram_bin_edges(df['total_steps'], bins=10)
max_steps = df["total_steps"].max()
max_target_steps = df["target_steps"].max()
bins = np.append(np.arange(0, max_steps + 1, max_steps // 10), max_target_steps)
bin_labels = [f"{bins[i]}-{bins[i+1]}" for i in range(len(bins) - 1)]
num_bins = len(bin_labels)
# colormap = px.colors.sequential.Darkmint_r
colormap = px.colors.sequential.YlOrRd_r
indices = np.linspace(0, len(colormap) - 1, num_bins, dtype=int)
bin_colors = [colormap[i] for i in indices]
# bin_colors[-1] = px.colors.sequential.Greens[-1]
# Initialize a dictionary to hold the counts for each method and bin range
# counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
# Populate the dictionary with counts
for method, group in df.groupby("method"):
counts, _ = np.histogram(group["total_steps"], bins=bins)
counts_per_method[method] = counts
# Sort the dictionary by the percentage of the last bin
counts_per_method = {
k: v
for k, v in sorted(
counts_per_method.items(), key=lambda item: item[1][-1] / sum(item[1])
)
}
count_or_percetange = st.toggle("show counts", False)
@st.experimental_fragment()
def plot_md_steps(counts_per_method, count_or_percetange):
"""Plot the distribution of the total number of MD steps before crash or completion."""
# Create a figure
fig = go.Figure()
# Add a bar for each bin range across all methods
for i, bin_label in enumerate(bin_labels):
for method, counts in counts_per_method.items():
fig.add_trace(
go.Bar(
# name=method, # This will be the legend entry
x=[counts[i] / counts.sum() * 100]
if not count_or_percetange
else [counts[i]],
y=[method], # Method as the y-axis category
# name=bin_label,
orientation="h", # Horizontal bars
marker=dict(
color=bin_colors[i],
line=dict(color="rgb(248, 248, 249)", width=1),
),
text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%",
width=0.5,
)
)
# Update the layout to stack the bars
fig.update_layout(
barmode="stack", # Stack the bars
title="Total MD steps (before crash or completion)",
xaxis_title="Percentage (%)" if not count_or_percetange else "Count",
yaxis_title="Method",
showlegend=False,
)
st.plotly_chart(fig)
plot_md_steps(counts_per_method, count_or_percetange)
st.markdown(
"""
> The histogram shows the distribution of the total number of MD steps before the system crashes or completes the trajectory. :red[The color of the bins indicates the number of steps in the bin]. :blue[The height of the bars indicates the percentage of each bin among all the runs].
"""
)
###
st.markdown(
"""
## Inference speed
The inference speed of the MLIPs is crucial for the high-throughput virutal screening. Under high pressure conditions, the atoms often move faster and closer to each other, which increases the size of neighbor list and local graph construction and hence slows down the inference speed.
"""
)
def func(x, a, n):
return a * x ** (-n)
@st.experimental_fragment()
def plot_speed(df, method_color_mapping):
"""Plot the inference speed as a function of the number of atoms."""
fig = px.scatter(
df,
x="natoms",
y="steps_per_second",
color="method",
size="total_steps",
hover_data=["material_id", "formula"],
color_discrete_map=method_color_mapping,
# trendline="ols",
# trendline_options=dict(log_x=True),
log_x=True,
# log_y=True,
# range_y=[1, 1e2],
range_x=[df["natoms"].min() * 0.9, df["natoms"].max() * 1.1],
# range_x=[1e3, 1e2],
title="Inference speed (on single A100 GPU)",
labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
)
x = np.linspace(df["natoms"].min(), df["natoms"].max(), 100)
for method, data in df.groupby("method"):
data.dropna(subset=["steps_per_second"], inplace=True)
popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"])
fig.add_trace(
go.Scatter(
x=x,
y=func(x, *popt),
mode="lines",
# name='Fit',
line=dict(color=method_color_mapping[method], width=3),
showlegend=False,
name=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
)
)
st.plotly_chart(fig)
plot_speed(df, method_color_mapping)
st.markdown(
"""
> The plot shows the inference speed (steps per second) as a function of the number of atoms in the system. :red[The size of the points is proportional to the total number of steps in the MD trajectory before crash or completion (~49990)]. :blue[The lines show the fit of the data to the power law function $a N^{-n}$], where $N$ is the number of atoms and $a$ and $n$ are the fit parameters.
"""
)
|