mlip-arena / serve /tasks /stability.py
cyrusyc's picture
improve stability visualization; update leaderborad
3b3aaa9
raw
history blame
6.32 kB
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from scipy.optimize import curve_fit
from mlip_arena.models import REGISTRY
DATA_DIR = Path("mlip_arena/tasks/stability")
st.markdown("""
# High Pressure Stability
Stable and accurate molecular dynamics (MD) simulations are important for understanding the properties of matters.
However, many MLIPs have unphysical potential energy surface (PES) at the short-range interatomic distances or
under many-body effect. These are often manifested as softened repulsion and hole in the PES and can lead to incorrect
and sampling of the phase space.
Here, we analyze the stability of the MD simulations under high pressure conditions by gradually increasing the pressure
from 0 to 100 GPa until the system crashes or completes 100 ps steps.
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
models = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "CHGNet"])
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
families = [REGISTRY[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json")
for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"])
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
fig = go.Figure()
# Determine the bin edges for the entire dataset to keep them consistent across groups
# bins = np.histogram_bin_edges(df['total_steps'], bins=10)
max_steps = df["total_steps"].max()
max_target_steps = df["target_steps"].max()
bins = np.append(np.arange(0, max_steps + 1, max_steps // 10), max_target_steps)
bin_labels = [f"{bins[i]}-{bins[i+1]}" for i in range(len(bins)-1)]
num_bins = len(bin_labels)
colormap = px.colors.sequential.Darkmint_r
indices = np.linspace(0, len(colormap) - 1, num_bins, dtype=int)
bin_colors = [colormap[i] for i in indices]
# bin_colors[-1] = px.colors.sequential.Greens[-1]
# Initialize a dictionary to hold the counts for each method and bin range
# counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
# Populate the dictionary with counts
for method, group in df.groupby("method"):
counts, _ = np.histogram(group["total_steps"], bins=bins)
counts_per_method[method] = counts
count_or_percetange = st.toggle("show counts", False)
# Create a figure
fig = go.Figure()
# Add a bar for each bin range across all methods
for i, bin_label in enumerate(bin_labels):
for method, counts in counts_per_method.items():
fig.add_trace(go.Bar(
# name=method, # This will be the legend entry
x=[counts[i]/counts.sum()*100] if not count_or_percetange else [counts[i]],
y=[method], # Method as the y-axis category
# name=bin_label,
orientation="h", # Horizontal bars
marker=dict(
color=bin_colors[i],
line=dict(color="rgb(248, 248, 249)", width=1)
),
text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%",
width=0.5
))
# Update the layout to stack the bars
fig.update_layout(
barmode="stack", # Stack the bars
title="Total MD steps (before crash or completion)",
xaxis_title="Percentage (%)" if not count_or_percetange else "Count",
yaxis_title="Method",
showlegend=False
)
# bins = np.linspace(0, 0.9, 10)
# for method, data in df.groupby("method"):
# # print(method, data)
# counts, bins = np.histogram(data['total_steps'])
# bin_labels = [f"{int(bins[i])}-{int(bins[i+1])}" for i in range(len(bins)-1)]
# # Create a horizontal bar chart
# fig = go.Figure(go.Bar(
# x=[counts[i]], # Count for this bin
# y=[method], # Method as the y-axis category
# # x=counts, # Bar lengths
# # y=bin_labels, # Bin labels as y-tick labels
# orientation='h' # Horizontal bars
# ))
# # Update layout for clarity
# fig.update_layout(
# title="Histogram of Total Steps",
# xaxis_title="Count",
# yaxis_title="Total Steps Range"
# )
st.plotly_chart(fig)
###
# st.markdown("""
# ## Runtime Analysis
# """)
fig = px.scatter(
df,
x="natoms",
y="steps_per_second",
color="method",
size="total_steps",
hover_data=["material_id", "formula"],
color_discrete_map=method_color_mapping,
# trendline="ols",
# trendline_options=dict(log_x=True),
log_x=True,
# log_y=True,
# range_y=[1, 1e2],
range_x=[df["natoms"].min()*0.9, df["natoms"].max()*1.1],
# range_x=[1e3, 1e2],
title="Inference speed (on single A100 GPU)",
labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
)
def func(x, a, n):
return a * x ** (-n)
x = np.linspace(df["natoms"].min(), df["natoms"].max(), 100)
for method, data in df.groupby("method"):
data.dropna(subset=["steps_per_second"], inplace=True)
popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"])
fig.add_trace(go.Scatter(
x=x,
y=func(x, *popt),
mode="lines",
# name='Fit',
line=dict(color=method_color_mapping[method], width=3),
showlegend=False,
name=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
))
st.plotly_chart(fig)