mlip-arena / serve /tasks /combustion.py
cyrusyc's picture
longer combustion trajs, add energy change, reaction energy
bd9f7b0
raw
history blame
12.2 kB
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from mlip_arena.models import REGISTRY as MODELS
DATA_DIR = Path("mlip_arena/tasks/combustion")
st.markdown("""
# Combustion
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
model
for model, metadata in MODELS.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
models = container.multiselect(
"MLIPs",
valid_models,
[
"MACE-MP(M)",
"CHGNet",
"M3GNet",
"SevenNet",
"ORB",
"EquiformerV2(OC22)",
"eSCN(OC20)",
],
)
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
@st.cache_data
def get_data(models):
families = [MODELS[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])
return df
df = get_data(models)
# families = [MODELS[str(model)]["family"] for model in models]
# dfs = [pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families]
# df = pd.concat(dfs, ignore_index=True)
# df.drop_duplicates(inplace=True, subset=["formula", "method"])
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
# Number of products
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=row["nproducts"],
mode="lines",
name=method,
line=dict(color=method_color_mapping[method]),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Number of water molecules",
)
st.plotly_chart(fig)
# tempearture
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=row["temperatures"],
mode="markers",
name=method,
line=dict(
color=method_color_mapping[method],
# width=1
),
marker=dict(color=method_color_mapping[method], size=3),
showlegend=True,
),
)
target_steps = df["target_steps"].iloc[0]
fig.add_trace(
go.Line(
x=[0, target_steps / 3, target_steps / 3 * 2, target_steps],
y=[300, 3000, 3000, 300],
mode="lines",
name="Target",
line=dict(dash="dash", color="white"),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Temperature (K)",
# yaxis2=dict(
# title="Product Percentage (%)",
# overlaying="y",
# side="right",
# range=[0, 100],
# tickmode="sync",
# ),
# template="plotly_dark",
)
st.plotly_chart(fig)
# Energy
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=np.array(row["energies"]) - row["energies"][0],
mode="lines",
name=method,
line=dict(
color=method_color_mapping[method],
# width=1
),
marker=dict(color=method_color_mapping[method], size=3),
showlegend=True,
),
)
fig.update_layout(
# title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Potential Energy 𝚫 (eV)",
# template="plotly_dark",
)
st.plotly_chart(fig)
# Total Energy
# fig = go.Figure()
# for method in df["method"].unique():
# row = df[df["method"] == method].iloc[0]
# fig.add_trace(
# go.Scatter(
# x=row["timestep"],
# y=np.array(row["energies"]) - row["energies"][0] + np.array(row["kinetic_energies"]),
# mode="lines",
# name=method,
# line=dict(
# color=method_color_mapping[method],
# # width=1
# ),
# marker=dict(color=method_color_mapping[method], size=3),
# showlegend=True,
# ),
# )
# fig.update_layout(
# # title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
# xaxis_title="Timestep",
# yaxis_title="Total Energy 𝚫 (eV)",
# # template="plotly_dark",
# )
# st.plotly_chart(fig)
# Reaction energy
fig = go.Figure()
exp_ref = -68.3078 # kcal/mol
df["reaction_energy"] = df["energies"].apply(lambda x: x[-1] - x[0]) / 128 * 23.0609 # kcal/mol
df["reaction_energy_abs_err"] = np.abs(df["reaction_energy"] - exp_ref)
df.sort_values("reaction_energy_abs_err", inplace=True)
fig.add_traces([
go.Bar(
x=df["method"],
y=df["reaction_energy"],
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=[f"{y:.2f}" for y in df["reaction_energy"]],
),
])
fig.add_shape(
go.layout.Shape(
type="line",
x0=-0.5, x1=len(df["method"]) - 0.5, # range covering the bars
y0=exp_ref, y1=exp_ref, # y-values for the horizontal line
line=dict(color="Red", width=2, dash="dash"),
layer="below"
)
)
fig.add_annotation(
go.layout.Annotation(
x=0.5,
xref="paper",
xanchor="center",
y=exp_ref,
yanchor="bottom",
text=f"Experiment: {exp_ref} kcal/mol [1]",
showarrow=False,
font=dict(
color="Red",
),
)
)
fig.update_layout(
# title="Reaction energy 𝚫H (kcal/mol)",
xaxis_title="Method <br> <span style='font-size: 10px;'>[1] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.</span>",
yaxis_title="Reaction energy 𝚫H (kcal/mol)",
# annotations = [
# dict(
# x=0.5, xref="paper", xanchor="center",
# y=-0.5, yref="paper", yanchor="bottom",
# text="Caption",
# )
# ]
)
st.plotly_chart(fig)
# Final reaction rate
fig = go.Figure()
df = df.sort_values("yield", ascending=True)
fig.add_trace(
go.Bar(
x=df["yield"] * 100,
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=[f"{y:.2f} %" for y in df["yield"] * 100],
)
)
fig.update_layout(
title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Yield (%)",
yaxis_title="Method"
)
st.plotly_chart(fig)
# MD runtime speed
fig = go.Figure()
df = df.sort_values("steps_per_second", ascending=True)
fig.add_trace(
go.Bar(
x=df["steps_per_second"],
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=df["steps_per_second"].round(1),
)
)
fig.update_layout(
title="MD runtime speed (on single A100 GPU)",
xaxis_title="Steps per second",
yaxis_title="Method",
)
st.plotly_chart(fig)
# COM drift
st.markdown("""### Center of mass drift
The center of mass (COM) drift is a measure of the stability of the simulation. A well-behaved simulation should have a COM drift close to zero. The COM drift is calculated as the displacement of the COM of the system from the initial position.
""")
@st.cache_data
def get_com_drifts(df):
df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True)
# Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components
df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame(
df_exploded["com_drifts"].tolist(), index=df_exploded.index
)
# Drop the original 'com_drifts' column
df_flat = df_exploded.drop(columns=["com_drifts"])
df_flat["total_com_drift"] = np.sqrt(
df_flat["com_drift_x"] ** 2
+ df_flat["com_drift_y"] ** 2
+ df_flat["com_drift_z"] ** 2
)
return df_flat
df_exploded = get_com_drifts(df)
if "play" not in st.session_state:
st.session_state.play = False
def toggle_playing():
st.session_state.play = not st.session_state.play
# st.button(
# "Play" if not st.session_state.play else "Pause",
# type="primary" if not st.session_state.play else "secondary",
# on_click=toggle_playing,
# )
increment = df["target_steps"].max() // 200
if "time_range" not in st.session_state:
st.session_state.time_range = (0, increment)
# @st.experimental_fragment(run_every=1e-3 if st.session_state.play else None)
@st.experimental_fragment()
def draw_com_drifts_plot():
if st.session_state.play:
start, end = st.session_state.time_range
end += increment
if end > df["target_steps"].max():
start = 0
end = 0
st.session_state.time_range = (start, end)
start_timestep, end_timestep = st.slider(
"Timestep",
min_value=0,
max_value=df["target_steps"].max(),
value=st.session_state.time_range,
key="time_range",
# on_change=check_range,
)
mask = (df_exploded["timestep"] >= start_timestep) & (
df_exploded["timestep"] <= end_timestep
)
df_filtered = df_exploded[mask]
df_filtered.sort_values(["method", "timestep"], inplace=True)
fig = px.line_3d(
data_frame=df_filtered,
x="com_drift_x",
y="com_drift_y",
z="com_drift_z",
labels={
"com_drift_x": "𝚫x (Å)",
"com_drift_y": "𝚫y (Å)",
"com_drift_z": "𝚫z (Å)",
},
category_orders={"method": df_exploded["method"].unique()},
color_discrete_sequence=[
method_color_mapping[method] for method in df_exploded["method"].unique()
],
color="method",
width=800,
height=800,
)
fig.update_layout(
scene=dict(
aspectmode="cube",
),
legend=dict(
orientation="v",
x=0.95,
xanchor="right",
y=1,
yanchor="top",
bgcolor="rgba(0, 0, 0, 0)",
),
)
fig.add_traces(
[
go.Scatter3d(
x=[0],
y=[0],
z=[0],
mode="markers",
marker=dict(size=3, color="white"),
name="origin",
),
# add last point of each method and annotate the total drift
go.Scatter3d(
# df_filtered.groupby("method")["com_drift_x"].last(),
x=df_filtered.groupby("method")["com_drift_x"].last(),
y=df_filtered.groupby("method")["com_drift_y"].last(),
z=df_filtered.groupby("method")["com_drift_z"].last(),
mode="markers+text",
marker=dict(size=3, color="white", opacity=0.5),
text=df_filtered.groupby("method")["total_com_drift"].last().round(3),
# size=5,
name="total drifts",
textposition="top center",
),
]
)
st.plotly_chart(fig)
draw_com_drifts_plot()