Spaces:
Running
Running
from __future__ import annotations | |
from pathlib import Path | |
import torch | |
import yaml | |
from ase import Atoms | |
from ase.calculators.calculator import Calculator, all_changes | |
from huggingface_hub import PyTorchModelHubMixin | |
from torch import nn | |
# from torch_geometric.data import Data | |
with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f: | |
REGISTRY = yaml.safe_load(f) | |
class MLIP( | |
nn.Module, | |
PyTorchModelHubMixin, | |
tags=["atomistic-simulation", "MLIP"], | |
): | |
def __init__(self, model: nn.Module) -> None: | |
super().__init__() | |
self.model = model | |
def forward(self, x): | |
return self.model(x) | |
class MLIPCalculator(MLIP, Calculator): | |
name: str | |
implemented_properties: list[str] = ["energy", "forces", "stress"] | |
def __init__( | |
self, | |
model, | |
# ASE Calculator | |
restart=None, | |
atoms=None, | |
directory=".", | |
calculator_kwargs: dict = {}, | |
): | |
MLIP.__init__(self, model=model) # Initialize MLIP part | |
Calculator.__init__( | |
self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs | |
) # Initialize ASE Calculator part | |
# Additional initialization if needed | |
# self.name: str = self.__class__.__name__ | |
# self.device = device or torch.device( | |
# "cuda" if torch.cuda.is_available() else "cpu" | |
# ) | |
# self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device) | |
# self.implemented_properties = ["energy", "forces", "stress"] | |
def calculate( | |
self, | |
atoms: Atoms, | |
properties: list[str], | |
system_changes: list = all_changes, | |
): | |
"""Calculate energies and forces for the given Atoms object""" | |
super().calculate(atoms, properties, system_changes) | |
output = self.forward(atoms) | |
self.results = {} | |
if "energy" in properties: | |
self.results["energy"] = output["energy"].squeeze().item() | |
if "forces" in properties: | |
self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy() | |
if "stress" in properties: | |
self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy() | |
def forward(self, x: Atoms) -> dict[str, torch.Tensor]: | |
"""Implement data conversion, graph creation, and model forward pass | |
Example implementation: | |
1. Use `ase.neighborlist.NeighborList` to get neighbor list | |
2. Create `torch_geometric.data.Data` object and copy the data | |
3. Pass the `Data` object to the model and return the output | |
""" | |
raise NotImplementedError | |