Spaces:
Running
Running
import os | |
import yaml | |
from huggingface_hub import HfApi, HfFileSystem, hf_hub_download | |
from mlip_arena.models import MLIP | |
from mlip_arena.models import REGISTRY as MODEL_REGISTRY | |
with open(os.path.join(os.path.dirname(__file__), "registry.yaml")) as f: | |
REGISTRY = yaml.load(f, Loader=yaml.FullLoader) | |
class Task: | |
def __init__(self): | |
self.name: str = self.__class__.__name__ # display name on the leaderboard | |
def run(self, model: MLIP): | |
"""Run the task using the given model and return the results""" | |
raise NotImplementedError | |
# Calcualte evaluation metrics and postprocessed data | |
api = HfApi() | |
api.upload_file( | |
path_or_fileobj="results.json", | |
path_in_repo=f"{self.__class__.__name__}/{model.__class__.__name__}/results.json", # Upload to a specific folder | |
repo_id="atomind/mlip-arena", | |
repo_type="dataset" | |
) | |
def get_results(self): | |
"""Get the results from the task""" | |
# fs = HfFileSystem() | |
# files = fs.glob(f"datasets/atomind/mlip-arena/{self.__class__.__name__}/*/*.json") | |
for model, metadata in MODEL_REGISTRY.items(): | |
results = hf_hub_download( | |
repo_id="atomind/mlip-arena", filename="results.json", | |
subfolder=f"{self.__class__.__name__}/{model}", | |
repo_type="dataset", | |
revision=None | |
) | |
return results |