cyrusyc commited on
Commit
8b028aa
1 Parent(s): f856a5e

add mrore/update diatomics curves

Browse files
mlip_arena/tasks/combustion/water.ipynb CHANGED
@@ -34,10 +34,11 @@
34
  {
35
  "cell_type": "markdown",
36
  "metadata": {
 
37
  "tags": []
38
  },
39
  "source": [
40
- "# Intial configuration"
41
  ]
42
  },
43
  {
@@ -173,7 +174,7 @@
173
  "source ~/.bashrc\n",
174
  "module load python\n",
175
  "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
176
- "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.26:43909 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 86400\n",
177
  "\n"
178
  ]
179
  },
@@ -181,9 +182,9 @@
181
  "name": "stderr",
182
  "output_type": "stream",
183
  "text": [
184
- "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n",
185
  "Perhaps you already have a cluster running?\n",
186
- "Hosting the HTTP server on port 36977 instead\n",
187
  " warnings.warn(\n"
188
  ]
189
  }
@@ -283,29 +284,313 @@
283
  },
284
  "outputs": [
285
  {
286
- "ename": "PrefectHTTPStatusError",
287
- "evalue": "Client error '401 Unauthorized' for url 'https://api.prefect.cloud/api/accounts/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspaces/d4bb0913-5f5e-49f7-bfc5-06509088baeb/flows/'\nResponse: {'detail': 'Invalid authentication credentials'}\nFor more information check: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
  "output_type": "error",
289
  "traceback": [
290
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
291
- "\u001b[0;31mPrefectHTTPStatusError\u001b[0m Traceback (most recent call last)",
292
  "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcombustion\u001b[49m\u001b[43m(\u001b[49m\u001b[43matoms\u001b[49m\u001b[43m)\u001b[49m\n",
293
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flows.py:1355\u001b[0m, in \u001b[0;36mFlow.__call__\u001b[0;34m(self, return_state, wait_for, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1351\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m track_viz_task(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39misasync, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, parameters)\n\u001b[1;32m 1353\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mflow_engine\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m run_flow\n\u001b[0;32m-> 1355\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1356\u001b[0m \u001b[43m \u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1357\u001b[0m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1358\u001b[0m \u001b[43m \u001b[49m\u001b[43mwait_for\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwait_for\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1359\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1360\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
294
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:821\u001b[0m, in \u001b[0;36mrun_flow\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m run_flow_async(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 820\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 821\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
295
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:696\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 682\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun_flow_sync\u001b[39m(\n\u001b[1;32m 683\u001b[0m flow: Flow[P, R],\n\u001b[1;32m 684\u001b[0m flow_run: Optional[FlowRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 687\u001b[0m return_type: Literal[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresult\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresult\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 688\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[R, State, \u001b[38;5;28;01mNone\u001b[39;00m]:\n\u001b[1;32m 689\u001b[0m engine \u001b[38;5;241m=\u001b[39m FlowRunEngine[P, R](\n\u001b[1;32m 690\u001b[0m flow\u001b[38;5;241m=\u001b[39mflow,\n\u001b[1;32m 691\u001b[0m parameters\u001b[38;5;241m=\u001b[39mparameters,\n\u001b[1;32m 692\u001b[0m flow_run\u001b[38;5;241m=\u001b[39mflow_run,\n\u001b[1;32m 693\u001b[0m wait_for\u001b[38;5;241m=\u001b[39mwait_for,\n\u001b[1;32m 694\u001b[0m )\n\u001b[0;32m--> 696\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mwith\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mwhile\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mis_running\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 698\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mwith\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_context\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n",
296
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/contextlib.py:137\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__enter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkwds, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgen)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m:\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgenerator didn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt yield\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
297
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:635\u001b[0m, in \u001b[0;36mFlowRunEngine.start\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[38;5;129m@contextmanager\u001b[39m\n\u001b[1;32m 634\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mstart\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Generator[\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m]:\n\u001b[0;32m--> 635\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mwith\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minitialize_run\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 636\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbegin_run\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 638\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mis_running\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n",
298
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/contextlib.py:137\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__enter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkwds, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgen)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m:\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgenerator didn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt yield\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
299
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:559\u001b[0m, in \u001b[0;36mFlowRunEngine.initialize_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 556\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_started \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 558\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run:\n\u001b[0;32m--> 559\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_flow_run\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 560\u001b[0m flow_run_url \u001b[38;5;241m=\u001b[39m url_for(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run)\n\u001b[1;32m 562\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flow_run_url:\n",
300
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:415\u001b[0m, in \u001b[0;36mFlowRunEngine.create_flow_run\u001b[0;34m(self, client)\u001b[0m\n\u001b[1;32m 410\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m subflow_run \u001b[38;5;241m:=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mload_subflow_run(\n\u001b[1;32m 411\u001b[0m parent_task_run\u001b[38;5;241m=\u001b[39mparent_task_run, client\u001b[38;5;241m=\u001b[39mclient, context\u001b[38;5;241m=\u001b[39mflow_run_ctx\n\u001b[1;32m 412\u001b[0m ):\n\u001b[1;32m 413\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m subflow_run\n\u001b[0;32m--> 415\u001b[0m flow_run \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_flow_run\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflow\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mserialize_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mPending\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mparent_task_run_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mparent_task_run\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mTagsContext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcurrent_tags\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 422\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flow_run_ctx:\n\u001b[1;32m 423\u001b[0m parent_logger \u001b[38;5;241m=\u001b[39m get_run_logger(flow_run_ctx)\n",
301
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/orchestration.py:3824\u001b[0m, in \u001b[0;36mSyncPrefectClient.create_flow_run\u001b[0;34m(self, flow, name, parameters, context, tags, parent_task_run_id, state)\u001b[0m\n\u001b[1;32m 3821\u001b[0m state \u001b[38;5;241m=\u001b[39m prefect\u001b[38;5;241m.\u001b[39mstates\u001b[38;5;241m.\u001b[39mPending()\n\u001b[1;32m 3823\u001b[0m \u001b[38;5;66;03m# Retrieve the flow id\u001b[39;00m\n\u001b[0;32m-> 3824\u001b[0m flow_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_flow\u001b[49m\u001b[43m(\u001b[49m\u001b[43mflow\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3826\u001b[0m flow_run_create \u001b[38;5;241m=\u001b[39m FlowRunCreate(\n\u001b[1;32m 3827\u001b[0m flow_id\u001b[38;5;241m=\u001b[39mflow_id,\n\u001b[1;32m 3828\u001b[0m flow_version\u001b[38;5;241m=\u001b[39mflow\u001b[38;5;241m.\u001b[39mversion,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3838\u001b[0m ),\n\u001b[1;32m 3839\u001b[0m )\n\u001b[1;32m 3841\u001b[0m flow_run_create_json \u001b[38;5;241m=\u001b[39m flow_run_create\u001b[38;5;241m.\u001b[39mmodel_dump(mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mjson\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
302
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/orchestration.py:3762\u001b[0m, in \u001b[0;36mSyncPrefectClient.create_flow\u001b[0;34m(self, flow)\u001b[0m\n\u001b[1;32m 3749\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_flow\u001b[39m(\u001b[38;5;28mself\u001b[39m, flow: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFlowObject\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m UUID:\n\u001b[1;32m 3750\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3751\u001b[0m \u001b[38;5;124;03m Create a flow in the Prefect API.\u001b[39;00m\n\u001b[1;32m 3752\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3760\u001b[0m \u001b[38;5;124;03m the ID of the flow in the backend\u001b[39;00m\n\u001b[1;32m 3761\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 3762\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_flow_from_name\u001b[49m\u001b[43m(\u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n",
303
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/orchestration.py:3778\u001b[0m, in \u001b[0;36mSyncPrefectClient.create_flow_from_name\u001b[0;34m(self, flow_name)\u001b[0m\n\u001b[1;32m 3765\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3766\u001b[0m \u001b[38;5;124;03mCreate a flow in the Prefect API.\u001b[39;00m\n\u001b[1;32m 3767\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3775\u001b[0m \u001b[38;5;124;03m the ID of the flow in the backend\u001b[39;00m\n\u001b[1;32m 3776\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 3777\u001b[0m flow_data \u001b[38;5;241m=\u001b[39m FlowCreate(name\u001b[38;5;241m=\u001b[39mflow_name)\n\u001b[0;32m-> 3778\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpost\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/flows/\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mflow_data\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_dump\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mjson\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3780\u001b[0m flow_id \u001b[38;5;241m=\u001b[39m response\u001b[38;5;241m.\u001b[39mjson()\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mid\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3781\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m flow_id:\n",
304
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/httpx/_client.py:1145\u001b[0m, in \u001b[0;36mClient.post\u001b[0;34m(self, url, content, data, files, json, params, headers, cookies, auth, follow_redirects, timeout, extensions)\u001b[0m\n\u001b[1;32m 1124\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m 1125\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1126\u001b[0m url: URLTypes,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1138\u001b[0m extensions: RequestExtensions \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1139\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Response:\n\u001b[1;32m 1140\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1141\u001b[0m \u001b[38;5;124;03m Send a `POST` request.\u001b[39;00m\n\u001b[1;32m 1142\u001b[0m \n\u001b[1;32m 1143\u001b[0m \u001b[38;5;124;03m **Parameters**: See `httpx.request`.\u001b[39;00m\n\u001b[1;32m 1144\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mPOST\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1148\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcontent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1149\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1150\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiles\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfiles\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1151\u001b[0m \u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjson\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1152\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1153\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1154\u001b[0m \u001b[43m \u001b[49m\u001b[43mcookies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcookies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1155\u001b[0m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1156\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1157\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1158\u001b[0m \u001b[43m \u001b[49m\u001b[43mextensions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextensions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1159\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
305
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/httpx/_client.py:827\u001b[0m, in \u001b[0;36mClient.request\u001b[0;34m(self, method, url, content, data, files, json, params, headers, cookies, auth, follow_redirects, timeout, extensions)\u001b[0m\n\u001b[1;32m 812\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(message, \u001b[38;5;167;01mDeprecationWarning\u001b[39;00m)\n\u001b[1;32m 814\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuild_request(\n\u001b[1;32m 815\u001b[0m method\u001b[38;5;241m=\u001b[39mmethod,\n\u001b[1;32m 816\u001b[0m url\u001b[38;5;241m=\u001b[39murl,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 825\u001b[0m extensions\u001b[38;5;241m=\u001b[39mextensions,\n\u001b[1;32m 826\u001b[0m )\n\u001b[0;32m--> 827\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m)\u001b[49m\n",
306
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/base.py:575\u001b[0m, in \u001b[0;36mPrefectHttpxSyncClient.send\u001b[0;34m(self, request, *args, **kwargs)\u001b[0m\n\u001b[1;32m 572\u001b[0m response \u001b[38;5;241m=\u001b[39m PrefectResponse\u001b[38;5;241m.\u001b[39mfrom_httpx_response(response)\n\u001b[1;32m 574\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mraise_on_all_errors:\n\u001b[0;32m--> 575\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 577\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\n",
307
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/base.py:174\u001b[0m, in \u001b[0;36mPrefectResponse.raise_for_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mraise_for_status()\n\u001b[1;32m 173\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPStatusError \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[0;32m--> 174\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m PrefectHTTPStatusError\u001b[38;5;241m.\u001b[39mfrom_httpx_error(exc) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m__cause__\u001b[39;00m\n",
308
- "\u001b[0;31mPrefectHTTPStatusError\u001b[0m: Client error '401 Unauthorized' for url 'https://api.prefect.cloud/api/accounts/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspaces/d4bb0913-5f5e-49f7-bfc5-06509088baeb/flows/'\nResponse: {'detail': 'Invalid authentication credentials'}\nFor more information check: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309
  ]
310
  }
311
  ],
@@ -339,7 +624,7 @@
339
  "name": "python",
340
  "nbconvert_exporter": "python",
341
  "pygments_lexer": "ipython3",
342
- "version": "3.11.8"
343
  },
344
  "widgets": {
345
  "application/vnd.jupyter.widget-state+json": {
 
34
  {
35
  "cell_type": "markdown",
36
  "metadata": {
37
+ "jp-MarkdownHeadingCollapsed": true,
38
  "tags": []
39
  },
40
  "source": [
41
+ "## Intial configuration"
42
  ]
43
  },
44
  {
 
174
  "source ~/.bashrc\n",
175
  "module load python\n",
176
  "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
177
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.15:38781 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 86400\n",
178
  "\n"
179
  ]
180
  },
 
182
  "name": "stderr",
183
  "output_type": "stream",
184
  "text": [
185
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:187: UserWarning: Port 8787 is already in use.\n",
186
  "Perhaps you already have a cluster running?\n",
187
+ "Hosting the HTTP server on port 44831 instead\n",
188
  " warnings.warn(\n"
189
  ]
190
  }
 
284
  },
285
  "outputs": [
286
  {
287
+ "data": {
288
+ "text/html": [
289
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">12:01:53.150 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - Created flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'khaki-hippo'</span> for flow<span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\"> 'combustion'</span>\n",
290
+ "</pre>\n"
291
+ ],
292
+ "text/plain": [
293
+ "12:01:53.150 | \u001b[36mINFO\u001b[0m | prefect.engine - Created flow run\u001b[35m 'khaki-hippo'\u001b[0m for flow\u001b[1;35m 'combustion'\u001b[0m\n"
294
+ ]
295
+ },
296
+ "metadata": {},
297
+ "output_type": "display_data"
298
+ },
299
+ {
300
+ "data": {
301
+ "text/html": [
302
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">12:01:53.156 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - View at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/ce836160-4f0d-49a4-90d8-227225cb8f4c</span>\n",
303
+ "</pre>\n"
304
+ ],
305
+ "text/plain": [
306
+ "12:01:53.156 | \u001b[36mINFO\u001b[0m | prefect.engine - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/ce836160-4f0d-49a4-90d8-227225cb8f4c\u001b[0m\n"
307
+ ]
308
+ },
309
+ "metadata": {},
310
+ "output_type": "display_data"
311
+ },
312
+ {
313
+ "data": {
314
+ "text/html": [
315
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">12:01:53.523 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(99282258, 'tcp://128.55.64.15:38781', workers=0, threads=0, memory=0 B)\n",
316
+ "</pre>\n"
317
+ ],
318
+ "text/plain": [
319
+ "12:01:53.523 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(99282258, 'tcp://128.55.64.15:38781', workers=0, threads=0, memory=0 B)\n"
320
+ ]
321
+ },
322
+ "metadata": {},
323
+ "output_type": "display_data"
324
+ },
325
+ {
326
+ "data": {
327
+ "text/html": [
328
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">13:06:57.332 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'khaki-hippo'</span> - Encountered exception during execution: IndexError('too many indices for tensor of dimension 1')\n",
329
+ "Traceback (most recent call last):\n",
330
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
331
+ " yield self\n",
332
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
333
+ " engine.call_flow_fn()\n",
334
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
335
+ " result = call_with_parameters(self.flow.fn, self.parameters)\n",
336
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
337
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
338
+ " return fn(*args, **kwargs)\n",
339
+ " ^^^^^^^^^^^^^^^^^^^\n",
340
+ " File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in combustion\n",
341
+ " return [future.result() for future in futures]\n",
342
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
343
+ " File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in &lt;listcomp&gt;\n",
344
+ " return [future.result() for future in futures]\n",
345
+ " ^^^^^^^^^^^^^^^\n",
346
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 143, in result\n",
347
+ " _result = self._final_state.result(\n",
348
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
349
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/schemas/objects.py\", line 314, in result\n",
350
+ " return get_state_result(\n",
351
+ " ^^^^^^^^^^^^^^^^^\n",
352
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 75, in get_state_result\n",
353
+ " return _get_state_result(\n",
354
+ " ^^^^^^^^^^^^^^^^^^\n",
355
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 399, in coroutine_wrapper\n",
356
+ " return run_coro_as_sync(ctx_call())\n",
357
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
358
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 243, in run_coro_as_sync\n",
359
+ " return call.result()\n",
360
+ " ^^^^^^^^^^^^^\n",
361
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 312, in result\n",
362
+ " return self.future.result(timeout=timeout)\n",
363
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
364
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 182, in result\n",
365
+ " return self.__get_result()\n",
366
+ " ^^^^^^^^^^^^^^^^^^^\n",
367
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/concurrent/futures/_base.py\", line 401, in __get_result\n",
368
+ " raise self._exception\n",
369
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 383, in _run_async\n",
370
+ " result = await coro\n",
371
+ " ^^^^^^^^^^\n",
372
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 225, in coroutine_wrapper\n",
373
+ " return await task\n",
374
+ " ^^^^^^^^^^\n",
375
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 389, in ctx_call\n",
376
+ " result = await async_fn(*args, **kwargs)\n",
377
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
378
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 138, in _get_state_result\n",
379
+ " raise await get_state_exception(state)\n",
380
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 763, in run_context\n",
381
+ " yield self\n",
382
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 1323, in run_task_sync\n",
383
+ " engine.call_task_fn(txn)\n",
384
+ " ^^^^^^^^^^^^^^^^^\n",
385
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 786, in call_task_fn\n",
386
+ " result = call_with_parameters(self.task.fn, parameters)\n",
387
+ " ^^^^^^^^^^^^^^^^^\n",
388
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
389
+ " return fn(*args, **kwargs)\n",
390
+ " ^^^^^^^^^^^^^^^^^\n",
391
+ " File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/tasks/md.py\", line 363, in run\n",
392
+ " md_runner.run(steps=n_steps)\n",
393
+ " ^^^^^^^^^^^^^^^^^\n",
394
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 277, in run\n",
395
+ " self.initialize()\n",
396
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 399, in initialize\n",
397
+ " self._calculate_q_past_and_future()\n",
398
+ " ^^^^^^^^^^^^^^^^^\n",
399
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 608, in _calculate_q_past_and_future\n",
400
+ " self._calculate_q_future(self.atoms.get_forces(md=True))\n",
401
+ " ^^^^^^^^^^^^^^^^^\n",
402
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/atoms.py\", line 812, in get_forces\n",
403
+ " forces = self._calc.get_forces(self)\n",
404
+ " ^^^^^^^^^^^^^^^^^\n",
405
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/abc.py\", line 30, in get_forces\n",
406
+ " return self.get_property('forces', atoms)\n",
407
+ " ^^^^^^^^^^^^^^^^^\n",
408
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/calculator.py\", line 538, in get_property\n",
409
+ " self.calculate(atoms, [name], system_changes)\n",
410
+ " ^^^^^^^^^^^^^^^^^\n",
411
+ " File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/models/externals/chgnet.py\", line 36, in calculate\n",
412
+ " super().calculate(atoms, properties, system_changes)\n",
413
+ " ^^^^^^^^^^^^^^^^^\n",
414
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/dynamics.py\", line 143, in calculate\n",
415
+ " model_prediction = self.model.predict_graph(\n",
416
+ " ^^^^^^^^^^^^^^^^^\n",
417
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 627, in predict_graph\n",
418
+ " prediction = self.forward(\n",
419
+ " ^^^^^^^^^^^^^^^^^\n",
420
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 359, in forward\n",
421
+ " batched_graph = BatchedGraph.from_graphs(\n",
422
+ " ^^^^^^^^^^^^^^^^^\n",
423
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 822, in from_graphs\n",
424
+ " center=atom_cart_coords[graph.atom_graph[:, 0]],\n",
425
+ " ^^^^^^^^^^^^^^^^^\n",
426
+ "IndexError: too many indices for tensor of dimension 1\n",
427
+ "</pre>\n"
428
+ ],
429
+ "text/plain": [
430
+ "13:06:57.332 | \u001b[38;5;160mERROR\u001b[0m | Flow run\u001b[35m 'khaki-hippo'\u001b[0m - Encountered exception during execution: IndexError('too many indices for tensor of dimension 1')\n",
431
+ "Traceback (most recent call last):\n",
432
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
433
+ " yield self\n",
434
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
435
+ " engine.call_flow_fn()\n",
436
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
437
+ " result = call_with_parameters(self.flow.fn, self.parameters)\n",
438
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
439
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
440
+ " return fn(*args, **kwargs)\n",
441
+ " ^^^^^^^^^^^^^^^^^^^\n",
442
+ " File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in combustion\n",
443
+ " return [future.result() for future in futures]\n",
444
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
445
+ " File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in <listcomp>\n",
446
+ " return [future.result() for future in futures]\n",
447
+ " ^^^^^^^^^^^^^^^\n",
448
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 143, in result\n",
449
+ " _result = self._final_state.result(\n",
450
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
451
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/schemas/objects.py\", line 314, in result\n",
452
+ " return get_state_result(\n",
453
+ " ^^^^^^^^^^^^^^^^^\n",
454
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 75, in get_state_result\n",
455
+ " return _get_state_result(\n",
456
+ " ^^^^^^^^^^^^^^^^^^\n",
457
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 399, in coroutine_wrapper\n",
458
+ " return run_coro_as_sync(ctx_call())\n",
459
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
460
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 243, in run_coro_as_sync\n",
461
+ " return call.result()\n",
462
+ " ^^^^^^^^^^^^^\n",
463
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 312, in result\n",
464
+ " return self.future.result(timeout=timeout)\n",
465
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
466
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 182, in result\n",
467
+ " return self.__get_result()\n",
468
+ " ^^^^^^^^^^^^^^^^^^^\n",
469
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/concurrent/futures/_base.py\", line 401, in __get_result\n",
470
+ " raise self._exception\n",
471
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 383, in _run_async\n",
472
+ " result = await coro\n",
473
+ " ^^^^^^^^^^\n",
474
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 225, in coroutine_wrapper\n",
475
+ " return await task\n",
476
+ " ^^^^^^^^^^\n",
477
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 389, in ctx_call\n",
478
+ " result = await async_fn(*args, **kwargs)\n",
479
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
480
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 138, in _get_state_result\n",
481
+ " raise await get_state_exception(state)\n",
482
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 763, in run_context\n",
483
+ " yield self\n",
484
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 1323, in run_task_sync\n",
485
+ " engine.call_task_fn(txn)\n",
486
+ " ^^^^^^^^^^^^^^^^^\n",
487
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 786, in call_task_fn\n",
488
+ " result = call_with_parameters(self.task.fn, parameters)\n",
489
+ " ^^^^^^^^^^^^^^^^^\n",
490
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
491
+ " return fn(*args, **kwargs)\n",
492
+ " ^^^^^^^^^^^^^^^^^\n",
493
+ " File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/tasks/md.py\", line 363, in run\n",
494
+ " md_runner.run(steps=n_steps)\n",
495
+ " ^^^^^^^^^^^^^^^^^\n",
496
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 277, in run\n",
497
+ " self.initialize()\n",
498
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 399, in initialize\n",
499
+ " self._calculate_q_past_and_future()\n",
500
+ " ^^^^^^^^^^^^^^^^^\n",
501
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 608, in _calculate_q_past_and_future\n",
502
+ " self._calculate_q_future(self.atoms.get_forces(md=True))\n",
503
+ " ^^^^^^^^^^^^^^^^^\n",
504
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/atoms.py\", line 812, in get_forces\n",
505
+ " forces = self._calc.get_forces(self)\n",
506
+ " ^^^^^^^^^^^^^^^^^\n",
507
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/abc.py\", line 30, in get_forces\n",
508
+ " return self.get_property('forces', atoms)\n",
509
+ " ^^^^^^^^^^^^^^^^^\n",
510
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/calculator.py\", line 538, in get_property\n",
511
+ " self.calculate(atoms, [name], system_changes)\n",
512
+ " ^^^^^^^^^^^^^^^^^\n",
513
+ " File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/models/externals/chgnet.py\", line 36, in calculate\n",
514
+ " super().calculate(atoms, properties, system_changes)\n",
515
+ " ^^^^^^^^^^^^^^^^^\n",
516
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/dynamics.py\", line 143, in calculate\n",
517
+ " model_prediction = self.model.predict_graph(\n",
518
+ " ^^^^^^^^^^^^^^^^^\n",
519
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 627, in predict_graph\n",
520
+ " prediction = self.forward(\n",
521
+ " ^^^^^^^^^^^^^^^^^\n",
522
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 359, in forward\n",
523
+ " batched_graph = BatchedGraph.from_graphs(\n",
524
+ " ^^^^^^^^^^^^^^^^^\n",
525
+ " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 822, in from_graphs\n",
526
+ " center=atom_cart_coords[graph.atom_graph[:, 0]],\n",
527
+ " ^^^^^^^^^^^^^^^^^\n",
528
+ "IndexError: too many indices for tensor of dimension 1\n"
529
+ ]
530
+ },
531
+ "metadata": {},
532
+ "output_type": "display_data"
533
+ },
534
+ {
535
+ "data": {
536
+ "text/html": [
537
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">13:06:58.009 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'khaki-hippo'</span> - Finished in state <span style=\"color: #d70000; text-decoration-color: #d70000\">Failed</span>('Flow run encountered an exception: IndexError: too many indices for tensor of dimension 1')\n",
538
+ "</pre>\n"
539
+ ],
540
+ "text/plain": [
541
+ "13:06:58.009 | \u001b[38;5;160mERROR\u001b[0m | Flow run\u001b[35m 'khaki-hippo'\u001b[0m - Finished in state \u001b[38;5;160mFailed\u001b[0m('Flow run encountered an exception: IndexError: too many indices for tensor of dimension 1')\n"
542
+ ]
543
+ },
544
+ "metadata": {},
545
+ "output_type": "display_data"
546
+ },
547
+ {
548
+ "ename": "IndexError",
549
+ "evalue": "too many indices for tensor of dimension 1",
550
  "output_type": "error",
551
  "traceback": [
552
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
553
+ "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
554
  "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcombustion\u001b[49m\u001b[43m(\u001b[49m\u001b[43matoms\u001b[49m\u001b[43m)\u001b[49m\n",
555
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flows.py:1345\u001b[0m, in \u001b[0;36mFlow.__call__\u001b[0;34m(self, return_state, wait_for, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1341\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m track_viz_task(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39misasync, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, parameters)\n\u001b[1;32m 1343\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mflow_engine\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m run_flow\n\u001b[0;32m-> 1345\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1346\u001b[0m \u001b[43m \u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1347\u001b[0m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1348\u001b[0m \u001b[43m \u001b[49m\u001b[43mwait_for\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwait_for\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1349\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1350\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
556
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:818\u001b[0m, in \u001b[0;36mrun_flow\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m run_flow_async(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 817\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 818\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
557
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:698\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 695\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[1;32m 696\u001b[0m engine\u001b[38;5;241m.\u001b[39mcall_flow_fn()\n\u001b[0;32m--> 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
558
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:255\u001b[0m, in \u001b[0;36mFlowRunEngine.result\u001b[0;34m(self, raise_on_failure)\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m NotSet:\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raise_on_failure:\n\u001b[0;32m--> 255\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m 258\u001b[0m \u001b[38;5;66;03m# This is a fall through case which leans on the existing state result mechanics to get the\u001b[39;00m\n\u001b[1;32m 259\u001b[0m \u001b[38;5;66;03m# return value. This is necessary because we currently will return a State object if the\u001b[39;00m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;66;03m# the State was Prefect-created.\u001b[39;00m\n\u001b[1;32m 261\u001b[0m \u001b[38;5;66;03m# TODO: Remove the need to get the result from a State except in cases where the return value\u001b[39;00m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;66;03m# is a State object.\u001b[39;00m\n",
559
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:652\u001b[0m, in \u001b[0;36mFlowRunEngine.run_context\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 645\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m timeout_context(\n\u001b[1;32m 646\u001b[0m seconds\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mtimeout_seconds,\n\u001b[1;32m 647\u001b[0m timeout_exc_type\u001b[38;5;241m=\u001b[39mFlowRunTimeoutError,\n\u001b[1;32m 648\u001b[0m ):\n\u001b[1;32m 649\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogger\u001b[38;5;241m.\u001b[39mdebug(\n\u001b[1;32m 650\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExecuting flow \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m for flow run \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m...\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 651\u001b[0m )\n\u001b[0;32m--> 652\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n\u001b[1;32m 653\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 654\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_timeout(exc)\n",
560
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:696\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mis_running():\n\u001b[1;32m 695\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[0;32m--> 696\u001b[0m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flow_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mresult()\n",
561
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:675\u001b[0m, in \u001b[0;36mFlowRunEngine.call_flow_fn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _call_flow_fn()\n\u001b[1;32m 674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 675\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mcall_with_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 676\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_success(result)\n",
562
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py:206\u001b[0m, in \u001b[0;36mcall_with_parameters\u001b[0;34m(fn, parameters)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03mCall a function with parameters extracted with `get_call_parameters`\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03mthe args/kwargs using `parameters_to_positional_and_keyword` directly\u001b[39;00m\n\u001b[1;32m 204\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 205\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m parameters_to_args_kwargs(fn, parameters)\n\u001b[0;32m--> 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
563
+ "Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36mcombustion\u001b[0;34m(atoms)\u001b[0m\n\u001b[1;32m 6\u001b[0m future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m 7\u001b[0m atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m 8\u001b[0m calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 21\u001b[0m restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 24\u001b[0m futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m[\u001b[49m\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfuture\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m]\u001b[49m\n",
564
+ "Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 6\u001b[0m future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m 7\u001b[0m atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m 8\u001b[0m calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 21\u001b[0m restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 24\u001b[0m futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m future \u001b[38;5;129;01min\u001b[39;00m futures]\n",
565
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py:143\u001b[0m, in \u001b[0;36mPrefectDaskFuture.result\u001b[0;34m(self, timeout, raise_on_failure)\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m future_result\n\u001b[0;32m--> 143\u001b[0m _result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_final_state\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 144\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_on_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_on_failure\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfetch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 145\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;66;03m# state.result is a `sync_compatible` function that may or may not return an awaitable\u001b[39;00m\n\u001b[1;32m 147\u001b[0m \u001b[38;5;66;03m# depending on whether the parent frame is sync or not\u001b[39;00m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m asyncio\u001b[38;5;241m.\u001b[39miscoroutine(_result):\n",
566
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/schemas/objects.py:314\u001b[0m, in \u001b[0;36mState.result\u001b[0;34m(self, raise_on_failure, fetch, retry_result_failure)\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 230\u001b[0m \u001b[38;5;124;03mRetrieve the result attached to this state.\u001b[39;00m\n\u001b[1;32m 231\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 310\u001b[0m \u001b[38;5;124;03m >>> await flow_run.state.result(raise_on_failure=True, fetch=True) # Raises `ValueError(\"oh no!\")`\u001b[39;00m\n\u001b[1;32m 311\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mstates\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_state_result\n\u001b[0;32m--> 314\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_state_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_on_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_on_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43mfetch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfetch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43mretry_result_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_result_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 319\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
567
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py:75\u001b[0m, in \u001b[0;36mget_state_result\u001b[0;34m(state, raise_on_failure, fetch, retry_result_failure)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m state\u001b[38;5;241m.\u001b[39mdata\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 75\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_state_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 76\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_on_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_on_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 78\u001b[0m \u001b[43m \u001b[49m\u001b[43mretry_result_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_result_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 79\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
568
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:399\u001b[0m, in \u001b[0;36msync_compatible.<locals>.coroutine_wrapper\u001b[0;34m(_sync, *args, **kwargs)\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ctx_call()\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 399\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_coro_as_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
569
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:243\u001b[0m, in \u001b[0;36mrun_coro_as_sync\u001b[0;34m(coroutine, force_new_thread, wait_for_result)\u001b[0m\n\u001b[1;32m 241\u001b[0m runner\u001b[38;5;241m.\u001b[39msubmit(call)\n\u001b[1;32m 242\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 243\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m:\n\u001b[1;32m 245\u001b[0m call\u001b[38;5;241m.\u001b[39mcancel()\n",
570
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py:312\u001b[0m, in \u001b[0;36mCall.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 306\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mresult\u001b[39m(\u001b[38;5;28mself\u001b[39m, timeout: Optional[\u001b[38;5;28mfloat\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 307\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 308\u001b[0m \u001b[38;5;124;03m Wait for the result of the call.\u001b[39;00m\n\u001b[1;32m 309\u001b[0m \n\u001b[1;32m 310\u001b[0m \u001b[38;5;124;03m Not safe for use from asynchronous contexts.\u001b[39;00m\n\u001b[1;32m 311\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 312\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n",
571
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py:182\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[1;32m 181\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;241m==\u001b[39m FINISHED:\n\u001b[0;32m--> 182\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 183\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 184\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m()\n",
572
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/concurrent/futures/_base.py:401\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception:\n\u001b[1;32m 400\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 401\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 403\u001b[0m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
573
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py:383\u001b[0m, in \u001b[0;36mCall._run_async\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfuture\u001b[38;5;241m.\u001b[39menforce_async_deadline() \u001b[38;5;28;01mas\u001b[39;00m cancel_scope:\n\u001b[1;32m 382\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 383\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m coro\n\u001b[1;32m 384\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 385\u001b[0m \u001b[38;5;66;03m# Forget this call's arguments in order to free up any memory\u001b[39;00m\n\u001b[1;32m 386\u001b[0m \u001b[38;5;66;03m# that may be referenced by them; after a call has happened,\u001b[39;00m\n\u001b[1;32m 387\u001b[0m \u001b[38;5;66;03m# there's no need to keep a reference to them\u001b[39;00m\n\u001b[1;32m 388\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
574
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:225\u001b[0m, in \u001b[0;36mrun_coro_as_sync.<locals>.coroutine_wrapper\u001b[0;34m()\u001b[0m\n\u001b[1;32m 223\u001b[0m task \u001b[38;5;241m=\u001b[39m create_task(coroutine)\n\u001b[1;32m 224\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m wait_for_result:\n\u001b[0;32m--> 225\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m task\n\u001b[1;32m 226\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 227\u001b[0m RUNNING_IN_RUN_SYNC_LOOP_FLAG\u001b[38;5;241m.\u001b[39mreset(token1)\n",
575
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:389\u001b[0m, in \u001b[0;36msync_compatible.<locals>.coroutine_wrapper.<locals>.ctx_call\u001b[0;34m()\u001b[0m\n\u001b[1;32m 387\u001b[0m token \u001b[38;5;241m=\u001b[39m RUNNING_ASYNC_FLAG\u001b[38;5;241m.\u001b[39mset(\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 388\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 389\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m async_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 390\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 391\u001b[0m RUNNING_ASYNC_FLAG\u001b[38;5;241m.\u001b[39mreset(token)\n",
576
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py:138\u001b[0m, in \u001b[0;36m_get_state_result\u001b[0;34m(state, raise_on_failure, retry_result_failure)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnfinishedRun(\n\u001b[1;32m 132\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRun is in \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mstate\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m state, its result is not available.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 133\u001b[0m )\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raise_on_failure \u001b[38;5;129;01mand\u001b[39;00m (\n\u001b[1;32m 136\u001b[0m state\u001b[38;5;241m.\u001b[39mis_crashed() \u001b[38;5;129;01mor\u001b[39;00m state\u001b[38;5;241m.\u001b[39mis_failed() \u001b[38;5;129;01mor\u001b[39;00m state\u001b[38;5;241m.\u001b[39mis_cancelled()\n\u001b[1;32m 137\u001b[0m ):\n\u001b[0;32m--> 138\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m get_state_exception(state)\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(state\u001b[38;5;241m.\u001b[39mdata, (BaseResult, ResultRecordMetadata)):\n\u001b[1;32m 141\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m _get_state_result_data_with_retries(\n\u001b[1;32m 142\u001b[0m state, retry_result_failure\u001b[38;5;241m=\u001b[39mretry_result_failure\n\u001b[1;32m 143\u001b[0m )\n",
577
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py:763\u001b[0m, in \u001b[0;36mrun_context\u001b[0;34m()\u001b[0m\n\u001b[1;32m 760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_cancelled():\n\u001b[1;32m 761\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTask run cancelled by the task runner\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 763\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n\u001b[1;32m 764\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 765\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_timeout(exc)\n",
578
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py:1323\u001b[0m, in \u001b[0;36mrun_task_sync\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1321\u001b[0m run_coro_as_sync(engine\u001b[38;5;241m.\u001b[39mwait_until_ready())\n\u001b[1;32m 1322\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context(), engine\u001b[38;5;241m.\u001b[39mtransaction_context() \u001b[38;5;28;01mas\u001b[39;00m txn:\n\u001b[0;32m-> 1323\u001b[0m engine\u001b[38;5;241m.\u001b[39mcall_task_fn(txn)\n\u001b[1;32m 1325\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mresult()\n",
579
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py:786\u001b[0m, in \u001b[0;36mcall_task_fn\u001b[0;34m()\u001b[0m\n\u001b[1;32m 784\u001b[0m result \u001b[38;5;241m=\u001b[39m call_with_parameters(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtask\u001b[38;5;241m.\u001b[39mfn, parameters)\n\u001b[1;32m 785\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 786\u001b[0m result \u001b[38;5;241m=\u001b[39m call_with_parameters(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtask\u001b[38;5;241m.\u001b[39mfn, parameters)\n\u001b[1;32m 787\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_success(result, transaction\u001b[38;5;241m=\u001b[39mtransaction)\n\u001b[1;32m 788\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
580
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py:206\u001b[0m, in \u001b[0;36mcall_with_parameters\u001b[0;34m()\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03mCall a function with parameters extracted with `get_call_parameters`\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03mthe args/kwargs using `parameters_to_positional_and_keyword` directly\u001b[39;00m\n\u001b[1;32m 204\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 205\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m parameters_to_args_kwargs(fn, parameters)\n\u001b[0;32m--> 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
581
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/tasks/md.py:363\u001b[0m, in \u001b[0;36mrun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 360\u001b[0m md_runner\u001b[38;5;241m.\u001b[39mattach(_callback, interval\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 362\u001b[0m start_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[0;32m--> 363\u001b[0m md_runner\u001b[38;5;241m.\u001b[39mrun(steps\u001b[38;5;241m=\u001b[39mn_steps)\n\u001b[1;32m 364\u001b[0m end_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[1;32m 366\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m traj_file \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
582
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py:277\u001b[0m, in \u001b[0;36mrun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Perform a number of time steps.\"\"\"\u001b[39;00m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minitialized:\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minitialize()\n\u001b[1;32m 278\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 279\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhave_the_atoms_been_changed():\n",
583
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py:399\u001b[0m, in \u001b[0;36minitialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 396\u001b[0m deltazeta \u001b[38;5;241m=\u001b[39m dt \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtfact \u001b[38;5;241m*\u001b[39m (atoms\u001b[38;5;241m.\u001b[39mget_kinetic_energy() \u001b[38;5;241m-\u001b[39m\n\u001b[1;32m 397\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdesiredEkin)\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mzeta_past \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mzeta \u001b[38;5;241m-\u001b[39m deltazeta\n\u001b[0;32m--> 399\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calculate_q_past_and_future()\n\u001b[1;32m 400\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minitialized \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
584
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py:608\u001b[0m, in \u001b[0;36m_calculate_q_past_and_future\u001b[0;34m()\u001b[0m\n\u001b[1;32m 606\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m2\u001b[39m):\n\u001b[1;32m 607\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq_past \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq \u001b[38;5;241m-\u001b[39m dt \u001b[38;5;241m*\u001b[39m np\u001b[38;5;241m.\u001b[39mdot(p \u001b[38;5;241m/\u001b[39m m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minv_h)\n\u001b[0;32m--> 608\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calculate_q_future(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39matoms\u001b[38;5;241m.\u001b[39mget_forces(md\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m))\n\u001b[1;32m 609\u001b[0m p \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mdot(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq_future \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq_past, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mh \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m dt)) \u001b[38;5;241m*\u001b[39m m\n\u001b[1;32m 610\u001b[0m e \u001b[38;5;241m=\u001b[39m ekin(p)\n",
585
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/atoms.py:812\u001b[0m, in \u001b[0;36mget_forces\u001b[0;34m()\u001b[0m\n\u001b[1;32m 810\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAtoms object has no calculator.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 812\u001b[0m forces \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calc\u001b[38;5;241m.\u001b[39mget_forces(\u001b[38;5;28mself\u001b[39m)\n\u001b[1;32m 814\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m apply_constraint:\n\u001b[1;32m 815\u001b[0m \u001b[38;5;66;03m# We need a special md flag here because for MD we want\u001b[39;00m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;66;03m# to skip real constraints but include special \"constraints\"\u001b[39;00m\n\u001b[1;32m 817\u001b[0m \u001b[38;5;66;03m# Like Hookean.\u001b[39;00m\n\u001b[1;32m 818\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m constraint \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconstraints:\n",
586
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/abc.py:30\u001b[0m, in \u001b[0;36mget_forces\u001b[0;34m()\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_forces\u001b[39m(\u001b[38;5;28mself\u001b[39m, atoms\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m---> 30\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_property(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mforces\u001b[39m\u001b[38;5;124m'\u001b[39m, atoms)\n",
587
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/calculator.py:538\u001b[0m, in \u001b[0;36mget_property\u001b[0;34m()\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39muse_cache:\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39matoms \u001b[38;5;241m=\u001b[39m atoms\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[0;32m--> 538\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcalculate(atoms, [name], system_changes)\n\u001b[1;32m 540\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresults:\n\u001b[1;32m 541\u001b[0m \u001b[38;5;66;03m# For some reason the calculator was not able to do what we want,\u001b[39;00m\n\u001b[1;32m 542\u001b[0m \u001b[38;5;66;03m# and that is OK.\u001b[39;00m\n\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m PropertyNotImplementedError(\n\u001b[1;32m 544\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m not present in this \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcalculation\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(name)\n\u001b[1;32m 545\u001b[0m )\n",
588
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/models/externals/chgnet.py:36\u001b[0m, in \u001b[0;36mcalculate\u001b[0;34m()\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcalculate\u001b[39m(\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 32\u001b[0m atoms: Atoms \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 33\u001b[0m properties: \u001b[38;5;28mlist\u001b[39m \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 34\u001b[0m system_changes: \u001b[38;5;28mlist\u001b[39m \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 35\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 36\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mcalculate(atoms, properties, system_changes)\n\u001b[1;32m 38\u001b[0m \u001b[38;5;66;03m# for ase.io.write compatibility\u001b[39;00m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresults\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrystal_fea\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n",
589
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/dynamics.py:143\u001b[0m, in \u001b[0;36mcalculate\u001b[0;34m()\u001b[0m\n\u001b[1;32m 141\u001b[0m structure \u001b[38;5;241m=\u001b[39m AseAtomsAdaptor\u001b[38;5;241m.\u001b[39mget_structure(atoms)\n\u001b[1;32m 142\u001b[0m graph \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mgraph_converter(structure)\n\u001b[0;32m--> 143\u001b[0m model_prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mpredict_graph(\n\u001b[1;32m 144\u001b[0m graph\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice), task\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mefsm\u001b[39m\u001b[38;5;124m\"\u001b[39m, return_crystal_feas\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 145\u001b[0m )\n\u001b[1;32m 147\u001b[0m \u001b[38;5;66;03m# Convert Result\u001b[39;00m\n\u001b[1;32m 148\u001b[0m factor \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mis_intensive \u001b[38;5;28;01melse\u001b[39;00m structure\u001b[38;5;241m.\u001b[39mcomposition\u001b[38;5;241m.\u001b[39mnum_atoms\n",
590
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py:627\u001b[0m, in \u001b[0;36mpredict_graph\u001b[0;34m()\u001b[0m\n\u001b[1;32m 625\u001b[0m n_steps \u001b[38;5;241m=\u001b[39m math\u001b[38;5;241m.\u001b[39mceil(\u001b[38;5;28mlen\u001b[39m(graphs) \u001b[38;5;241m/\u001b[39m batch_size)\n\u001b[1;32m 626\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(n_steps):\n\u001b[0;32m--> 627\u001b[0m prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mforward(\n\u001b[1;32m 628\u001b[0m [\n\u001b[1;32m 629\u001b[0m g\u001b[38;5;241m.\u001b[39mto(model_device)\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m g \u001b[38;5;129;01min\u001b[39;00m graphs[batch_size \u001b[38;5;241m*\u001b[39m step : batch_size \u001b[38;5;241m*\u001b[39m (step \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m)]\n\u001b[1;32m 631\u001b[0m ],\n\u001b[1;32m 632\u001b[0m task\u001b[38;5;241m=\u001b[39mtask,\n\u001b[1;32m 633\u001b[0m return_site_energies\u001b[38;5;241m=\u001b[39mreturn_site_energies,\n\u001b[1;32m 634\u001b[0m return_atom_feas\u001b[38;5;241m=\u001b[39mreturn_atom_feas,\n\u001b[1;32m 635\u001b[0m return_crystal_feas\u001b[38;5;241m=\u001b[39mreturn_crystal_feas,\n\u001b[1;32m 636\u001b[0m )\n\u001b[1;32m 637\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m {\n\u001b[1;32m 638\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124me\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 639\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 644\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrystal_fea\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 645\u001b[0m } \u001b[38;5;241m&\u001b[39m {\u001b[38;5;241m*\u001b[39mprediction}:\n\u001b[1;32m 646\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx, tensor \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(prediction[key]):\n",
591
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py:359\u001b[0m, in \u001b[0;36mforward\u001b[0;34m()\u001b[0m\n\u001b[1;32m 354\u001b[0m comp_energy \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 355\u001b[0m \u001b[38;5;241m0\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcomposition_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcomposition_model(graphs)\n\u001b[1;32m 356\u001b[0m )\n\u001b[1;32m 358\u001b[0m \u001b[38;5;66;03m# Make batched graph\u001b[39;00m\n\u001b[0;32m--> 359\u001b[0m batched_graph \u001b[38;5;241m=\u001b[39m BatchedGraph\u001b[38;5;241m.\u001b[39mfrom_graphs(\n\u001b[1;32m 360\u001b[0m graphs,\n\u001b[1;32m 361\u001b[0m bond_basis_expansion\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbond_basis_expansion,\n\u001b[1;32m 362\u001b[0m angle_basis_expansion\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mangle_basis_expansion,\n\u001b[1;32m 363\u001b[0m compute_stress\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124ms\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m task,\n\u001b[1;32m 364\u001b[0m )\n\u001b[1;32m 366\u001b[0m \u001b[38;5;66;03m# Pass to model\u001b[39;00m\n\u001b[1;32m 367\u001b[0m prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compute(\n\u001b[1;32m 368\u001b[0m batched_graph,\n\u001b[1;32m 369\u001b[0m compute_force\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m task,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 374\u001b[0m return_crystal_feas\u001b[38;5;241m=\u001b[39mreturn_crystal_feas,\n\u001b[1;32m 375\u001b[0m )\n",
592
+ "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py:822\u001b[0m, in \u001b[0;36mfrom_graphs\u001b[0;34m()\u001b[0m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;66;03m# Bonds\u001b[39;00m\n\u001b[1;32m 820\u001b[0m atom_cart_coords \u001b[38;5;241m=\u001b[39m graph\u001b[38;5;241m.\u001b[39matom_frac_coord \u001b[38;5;241m@\u001b[39m lattice\n\u001b[1;32m 821\u001b[0m bond_basis_ag, bond_basis_bg, bond_vectors \u001b[38;5;241m=\u001b[39m bond_basis_expansion(\n\u001b[0;32m--> 822\u001b[0m center\u001b[38;5;241m=\u001b[39matom_cart_coords[graph\u001b[38;5;241m.\u001b[39matom_graph[:, \u001b[38;5;241m0\u001b[39m]],\n\u001b[1;32m 823\u001b[0m neighbor\u001b[38;5;241m=\u001b[39matom_cart_coords[graph\u001b[38;5;241m.\u001b[39matom_graph[:, \u001b[38;5;241m1\u001b[39m]],\n\u001b[1;32m 824\u001b[0m undirected2directed\u001b[38;5;241m=\u001b[39mgraph\u001b[38;5;241m.\u001b[39mundirected2directed,\n\u001b[1;32m 825\u001b[0m image\u001b[38;5;241m=\u001b[39mgraph\u001b[38;5;241m.\u001b[39mneighbor_image,\n\u001b[1;32m 826\u001b[0m lattice\u001b[38;5;241m=\u001b[39mlattice,\n\u001b[1;32m 827\u001b[0m )\n\u001b[1;32m 828\u001b[0m atom_positions\u001b[38;5;241m.\u001b[39mappend(atom_cart_coords)\n\u001b[1;32m 829\u001b[0m bond_bases_ag\u001b[38;5;241m.\u001b[39mappend(bond_basis_ag)\n",
593
+ "\u001b[0;31mIndexError\u001b[0m: too many indices for tensor of dimension 1"
594
  ]
595
  }
596
  ],
 
624
  "name": "python",
625
  "nbconvert_exporter": "python",
626
  "pygments_lexer": "ipython3",
627
+ "version": "3.11.10"
628
  },
629
  "widgets": {
630
  "application/vnd.jupyter.widget-state+json": {
mlip_arena/tasks/diatomics/gpaw/run.ipynb CHANGED
@@ -38,7 +38,7 @@
38
  {
39
  "data": {
40
  "application/vnd.jupyter.widget-view+json": {
41
- "model_id": "cf2b43396da34f09b4fa9163b0d268d7",
42
  "version_major": 2,
43
  "version_minor": 0
44
  },
@@ -59,7 +59,7 @@
59
  {
60
  "data": {
61
  "application/vnd.jupyter.widget-view+json": {
62
- "model_id": "048104b77fba4550867161794f620d65",
63
  "version_major": 2,
64
  "version_minor": 0
65
  },
@@ -80,7 +80,7 @@
80
  {
81
  "data": {
82
  "application/vnd.jupyter.widget-view+json": {
83
- "model_id": "8fa672379414479daa47f8ed7f425379",
84
  "version_major": 2,
85
  "version_minor": 0
86
  },
@@ -95,13 +95,13 @@
95
  "name": "stdout",
96
  "output_type": "stream",
97
  "text": [
98
- "Atoms(symbols='N2', pbc=True, cell=[15.0, 15.001, 15.002], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
99
  ]
100
  },
101
  {
102
  "data": {
103
  "application/vnd.jupyter.widget-view+json": {
104
- "model_id": "1bb32681b918425597e6e4f9c2411c5f",
105
  "version_major": 2,
106
  "version_minor": 0
107
  },
@@ -116,13 +116,13 @@
116
  "name": "stdout",
117
  "output_type": "stream",
118
  "text": [
119
- "Atoms(symbols='O2', pbc=True, cell=[15.0, 15.001, 15.002], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
120
  ]
121
  },
122
  {
123
  "data": {
124
  "application/vnd.jupyter.widget-view+json": {
125
- "model_id": "a754ff99a9e944f5bb77346fa5c7f123",
126
  "version_major": 2,
127
  "version_minor": 0
128
  },
@@ -143,7 +143,7 @@
143
  {
144
  "data": {
145
  "application/vnd.jupyter.widget-view+json": {
146
- "model_id": "a7c3f7819f1b47eea4b42edaac6b1da6",
147
  "version_major": 2,
148
  "version_minor": 0
149
  },
@@ -164,7 +164,7 @@
164
  {
165
  "data": {
166
  "application/vnd.jupyter.widget-view+json": {
167
- "model_id": "5e79b7bc8b4340ff9d35755ba859a2ba",
168
  "version_major": 2,
169
  "version_minor": 0
170
  },
@@ -185,7 +185,7 @@
185
  {
186
  "data": {
187
  "application/vnd.jupyter.widget-view+json": {
188
- "model_id": "43c6a60f2f2040a8a005c462cf36eb02",
189
  "version_major": 2,
190
  "version_minor": 0
191
  },
@@ -200,13 +200,13 @@
200
  "name": "stdout",
201
  "output_type": "stream",
202
  "text": [
203
- "Atoms(symbols='Na2', pbc=True, cell=[15.5, 15.501, 15.502], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
204
  ]
205
  },
206
  {
207
  "data": {
208
  "application/vnd.jupyter.widget-view+json": {
209
- "model_id": "6568ffaad27a4ce3bb540f1fc3440e10",
210
  "version_major": 2,
211
  "version_minor": 0
212
  },
@@ -221,13 +221,14 @@
221
  "name": "stdout",
222
  "output_type": "stream",
223
  "text": [
 
224
  "Atoms(symbols='Cr2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
225
  ]
226
  },
227
  {
228
  "data": {
229
  "application/vnd.jupyter.widget-view+json": {
230
- "model_id": "03f87ed3d767468fa018b33a57eb94cc",
231
  "version_major": 2,
232
  "version_minor": 0
233
  },
@@ -321,7 +322,7 @@
321
  " restart_fpath = out_dir / 'restart.gpw'\n",
322
  "\n",
323
  " calc = GPAW(\n",
324
- " mode=PW(1500),\n",
325
  " xc='PBE',\n",
326
  " spinpol=True,\n",
327
  " # basis='dzp'\n",
@@ -330,12 +331,8 @@
330
  " # nbands=0 if element.is_noble_gas else '110%',\n",
331
  " hund=False,\n",
332
  " mixer=MixerDif(0.01, 1, 1) if element.is_transition_metal else MixerDif(0.25, 3, 10),\n",
333
- <<<<<<< Updated upstream
334
- " eigensolver='rmm-diis', #Davidson(3), # This solver can parallelize over bands Davidson(3), #\n",
335
- =======
336
  " # eigensolver='rmm-diis', #Davidson(3), # This solver can parallelize over bands Davidson(3), #\n",
337
- >>>>>>> Stashed changes
338
- " occupations=FermiDirac(0.03, fixmagmom=False), # if not element.is_metal else FermiDirac(0.2, fixmagmom=False),\n",
339
  " # eigensolver=LCAOETDM(),\n",
340
  " # # searchdir_algo={'name': 'l-bfgs-p', 'memory': 10}),\n",
341
  " # occupations={'name': 'fixed-uniform'},\n",
@@ -349,17 +346,12 @@
349
  " 'energy': 5e-4,\n",
350
  " # 'bands': 4\n",
351
  " },\n",
352
- " parallel={'gpu': True}\n",
353
  " # {'energy': 0.0005, # eV / electron\n",
354
  " # 'density': 1.0e-4, # electrons / electron\n",
355
  " # 'eigenstates': 4.0e-8, # eV^2 / electron\n",
356
  " # 'bands': 'occupied'},\n",
357
- <<<<<<< Updated upstream
358
- " \n",
359
- =======
360
  " # parallel={'gpu': True},\n",
361
  " setups='paw' \n",
362
- >>>>>>> Stashed changes
363
  " )\n",
364
  " # calc = GPAW(\n",
365
  " # mode='pw', #PW(1500),\n",
@@ -424,17 +416,17 @@
424
  "\n",
425
  " if fm_energy <= afm_energy:\n",
426
  " magmoms = fm_magmoms\n",
427
- " # atoms.set_initial_magnetic_moments(magmoms) \n",
428
  " # shutil.move(out_dir / \"WAVECAR_FM\", out_dir / \"WAVECAR\") \n",
429
  " else:\n",
430
  " magmoms = afm_magmoms\n",
431
- " # atoms.set_initial_magnetic_moments(magmoms)\n",
432
  " # shutil.move(out_dir / \"WAVECAR_AFM\", out_dir / \"WAVECAR\")\n",
433
  "\n",
434
- " if i > 0: \n",
435
- " magmoms = atoms.get_magnetic_moments()\n",
436
  "\n",
437
- " atoms.set_initial_magnetic_moments(magmoms)\n",
438
  " # m = min(abs(magmoms[0])*1.2, m)\n",
439
  " # magmoms = magmoms*m/np.abs(magmoms)\n",
440
  "\n",
@@ -451,20 +443,12 @@
451
  },
452
  {
453
  "cell_type": "code",
454
- "execution_count": 13,
455
  "id": "06118461-8db9-49f0-8aae-2150146ab9b5",
456
  "metadata": {
457
  "tags": []
458
  },
459
- "outputs": [
460
- {
461
- "name": "stdout",
462
- "output_type": "stream",
463
- "text": [
464
- "\n"
465
- ]
466
- }
467
- ],
468
  "source": [
469
  "!echo $GPAW_NEW"
470
  ]
@@ -558,163 +542,104 @@
558
  "widgets": {
559
  "application/vnd.jupyter.widget-state+json": {
560
  "state": {
561
- "019efd3abfaf449f90bc4e2419e97d84": {
562
  "model_module": "@jupyter-widgets/controls",
563
  "model_module_version": "2.0.0",
564
- "model_name": "FloatProgressModel",
565
  "state": {
566
- "bar_style": "success",
567
- "layout": "IPY_MODEL_295482d5db12405c806572738cbff31e",
568
- "max": 22,
569
- "style": "IPY_MODEL_e09a0c50b3bb4e2ebaba70054dcbbedb",
570
- "value": 22
571
  }
572
  },
573
- "0325659ee95e49a5b91b3b5d00ed7438": {
574
  "model_module": "@jupyter-widgets/controls",
575
  "model_module_version": "2.0.0",
576
- "model_name": "FloatProgressModel",
577
  "state": {
578
- "bar_style": "danger",
579
- "layout": "IPY_MODEL_74c767383218458094552abeda7cf5a8",
580
- "max": 16,
581
- "style": "IPY_MODEL_b9c8d4aba50241e4873535d5253bc431",
582
- "value": 8
583
  }
584
  },
585
- "03a04053ba144fb4b307d6bcc564b412": {
586
- "model_module": "@jupyter-widgets/base",
587
- "model_module_version": "2.0.0",
588
- "model_name": "LayoutModel",
589
- "state": {}
590
- },
591
- "03f87ed3d767468fa018b33a57eb94cc": {
592
  "model_module": "@jupyter-widgets/controls",
593
  "model_module_version": "2.0.0",
594
- "model_name": "HBoxModel",
595
  "state": {
596
- "children": [
597
- "IPY_MODEL_7a1b1f4cbceb41e09dad9b8724d74046",
598
- "IPY_MODEL_0a0e4f0e284c4e6a8b4c6ecfd884fc1a",
599
- "IPY_MODEL_06455df8a89646fa993fee1979052f1e"
600
- ],
601
- "layout": "IPY_MODEL_73bc039f53694da9ab33d38f3105ff84"
602
  }
603
  },
604
- "048104b77fba4550867161794f620d65": {
605
  "model_module": "@jupyter-widgets/controls",
606
  "model_module_version": "2.0.0",
607
  "model_name": "HBoxModel",
608
  "state": {
609
  "children": [
610
- "IPY_MODEL_293e634149a84e368597d71b93e9028d",
611
- "IPY_MODEL_080c0fd5c655426d8cb7d76ac45300e9",
612
- "IPY_MODEL_a38e0664f6244c998579aa13a2ae30fe"
613
  ],
614
- "layout": "IPY_MODEL_d854a6aa89aa4b0b85b74e6571610fa5"
615
- }
616
- },
617
- "05222193081f48b9be6bfc7d641ebb74": {
618
- "model_module": "@jupyter-widgets/controls",
619
- "model_module_version": "2.0.0",
620
- "model_name": "FloatProgressModel",
621
- "state": {
622
- "bar_style": "success",
623
- "layout": "IPY_MODEL_17a3ef38fb2247309b10e3ceb637b3a3",
624
- "max": 16,
625
- "style": "IPY_MODEL_a8c890c01841474aa7bc13026223fb0f",
626
- "value": 16
627
  }
628
  },
629
- "05ed74a6ba944337bebcb2fac08c00de": {
630
  "model_module": "@jupyter-widgets/controls",
631
  "model_module_version": "2.0.0",
632
  "model_name": "FloatProgressModel",
633
  "state": {
634
- "bar_style": "danger",
635
- "layout": "IPY_MODEL_2a9e6e02eea34005972127793e52a1b9",
636
- "max": 29,
637
- "style": "IPY_MODEL_1ff383b756164e788e5e03be30f715a1",
638
- "value": 3
639
- }
640
- },
641
- "06455df8a89646fa993fee1979052f1e": {
642
- "model_module": "@jupyter-widgets/controls",
643
- "model_module_version": "2.0.0",
644
- "model_name": "HTMLModel",
645
- "state": {
646
- "layout": "IPY_MODEL_7fa6e2baf01f48758b14ecff82b6b66a",
647
- "style": "IPY_MODEL_c080db3fe74a4fddad2f70f4c3b066c9",
648
- "value": " 0/29 [00:00&lt;?, ?it/s]"
649
  }
650
  },
651
- "064928844e9a4e7e922d917d81e44ff8": {
652
  "model_module": "@jupyter-widgets/base",
653
  "model_module_version": "2.0.0",
654
  "model_name": "LayoutModel",
655
  "state": {}
656
  },
657
- "068d7d8108c54a5b811dffcfaf40239e": {
658
- "model_module": "@jupyter-widgets/controls",
659
- "model_module_version": "2.0.0",
660
- "model_name": "FloatProgressModel",
661
- "state": {
662
- "bar_style": "success",
663
- "layout": "IPY_MODEL_8b6f74e2cce947dbba9ffcdc474f7266",
664
- "max": 28,
665
- "style": "IPY_MODEL_9bfc0fbbe907411682d8f6fbd3ff3b5c",
666
- "value": 28
667
- }
668
- },
669
- "070a3885f56e4c868105e1890b6e22c6": {
670
  "model_module": "@jupyter-widgets/controls",
671
  "model_module_version": "2.0.0",
672
- "model_name": "ProgressStyleModel",
673
  "state": {
674
- "description_width": ""
 
 
675
  }
676
  },
677
- "080c0fd5c655426d8cb7d76ac45300e9": {
678
  "model_module": "@jupyter-widgets/controls",
679
  "model_module_version": "2.0.0",
680
  "model_name": "FloatProgressModel",
681
  "state": {
682
- "bar_style": "success",
683
- "layout": "IPY_MODEL_62719a7465b345979bb2459d04cebef4",
684
- "max": 16,
685
- "style": "IPY_MODEL_d4eab8e28aea4048b6742decdc83b75c",
686
- "value": 16
687
  }
688
  },
689
- "0a0e4f0e284c4e6a8b4c6ecfd884fc1a": {
690
  "model_module": "@jupyter-widgets/controls",
691
  "model_module_version": "2.0.0",
692
- "model_name": "FloatProgressModel",
693
  "state": {
694
- "layout": "IPY_MODEL_03a04053ba144fb4b307d6bcc564b412",
695
- "max": 29,
696
- "style": "IPY_MODEL_89a35e74cfa549818bc55c018ec41b3c"
 
 
 
697
  }
698
  },
699
- "0b1640f03887470d8db0697f71b279a5": {
700
  "model_module": "@jupyter-widgets/base",
701
  "model_module_version": "2.0.0",
702
  "model_name": "LayoutModel",
703
  "state": {}
704
  },
705
- "0cb5caf71dc4422ba63c318519d70091": {
706
- "model_module": "@jupyter-widgets/controls",
707
- "model_module_version": "2.0.0",
708
- "model_name": "FloatProgressModel",
709
- "state": {
710
- "bar_style": "success",
711
- "layout": "IPY_MODEL_0dec17085c864428820c8f9fd5bfd882",
712
- "max": 25,
713
- "style": "IPY_MODEL_070a3885f56e4c868105e1890b6e22c6",
714
- "value": 25
715
- }
716
- },
717
- "0cf24b3f362a423f9ec09410b2da7ab9": {
718
  "model_module": "@jupyter-widgets/controls",
719
  "model_module_version": "2.0.0",
720
  "model_name": "HTMLStyleModel",
@@ -724,59 +649,17 @@
724
  "text_color": null
725
  }
726
  },
727
- "0dc8cccaddd3466685f62cf530a2e32d": {
728
- "model_module": "@jupyter-widgets/base",
729
- "model_module_version": "2.0.0",
730
- "model_name": "LayoutModel",
731
- "state": {}
732
- },
733
- "0dec17085c864428820c8f9fd5bfd882": {
734
- "model_module": "@jupyter-widgets/base",
735
- "model_module_version": "2.0.0",
736
- "model_name": "LayoutModel",
737
- "state": {}
738
- },
739
- "1191615f21194ca48fb25f9533117b87": {
740
- "model_module": "@jupyter-widgets/base",
741
- "model_module_version": "2.0.0",
742
- "model_name": "LayoutModel",
743
- "state": {}
744
- },
745
- "12b05791535a4222830d69a025e7c76f": {
746
  "model_module": "@jupyter-widgets/controls",
747
  "model_module_version": "2.0.0",
748
  "model_name": "HTMLModel",
749
  "state": {
750
- "layout": "IPY_MODEL_56f11c401d9749df8743fd8126f2e376",
751
- "style": "IPY_MODEL_95b437973d1f40acb2d0cfeba75893bc",
752
- "value": " 44%"
753
- }
754
- },
755
- "13f57927f07149a3b5eaee9a4de745fc": {
756
- "model_module": "@jupyter-widgets/base",
757
- "model_module_version": "2.0.0",
758
- "model_name": "LayoutModel",
759
- "state": {}
760
- },
761
- "175f4a5c23fd4e33839d75ea09bd0b63": {
762
- "model_module": "@jupyter-widgets/controls",
763
- "model_module_version": "2.0.0",
764
- "model_name": "FloatProgressModel",
765
- "state": {
766
- "bar_style": "success",
767
- "layout": "IPY_MODEL_2524bedd5427411a9190237d797e2185",
768
- "max": 24,
769
- "style": "IPY_MODEL_1ddb98b8b01045ca839a725f3d7940b4",
770
- "value": 24
771
  }
772
  },
773
- "17a3ef38fb2247309b10e3ceb637b3a3": {
774
- "model_module": "@jupyter-widgets/base",
775
- "model_module_version": "2.0.0",
776
- "model_name": "LayoutModel",
777
- "state": {}
778
- },
779
- "1b5af72876ef4a4ea02b42370d798860": {
780
  "model_module": "@jupyter-widgets/controls",
781
  "model_module_version": "2.0.0",
782
  "model_name": "HTMLStyleModel",
@@ -786,20 +669,7 @@
786
  "text_color": null
787
  }
788
  },
789
- "1bb32681b918425597e6e4f9c2411c5f": {
790
- "model_module": "@jupyter-widgets/controls",
791
- "model_module_version": "2.0.0",
792
- "model_name": "HBoxModel",
793
- "state": {
794
- "children": [
795
- "IPY_MODEL_80b54d27120c4447b7b71e3cfd236efd",
796
- "IPY_MODEL_a0a18912938849328eaeed3a3b56e568",
797
- "IPY_MODEL_fe1e85dd7119422a89688939420ae705"
798
- ],
799
- "layout": "IPY_MODEL_41d948f60f0e4c64bfa963937192ff05"
800
- }
801
- },
802
- "1ddb98b8b01045ca839a725f3d7940b4": {
803
  "model_module": "@jupyter-widgets/controls",
804
  "model_module_version": "2.0.0",
805
  "model_name": "ProgressStyleModel",
@@ -807,7 +677,7 @@
807
  "description_width": ""
808
  }
809
  },
810
- "1ff383b756164e788e5e03be30f715a1": {
811
  "model_module": "@jupyter-widgets/controls",
812
  "model_module_version": "2.0.0",
813
  "model_name": "ProgressStyleModel",
@@ -815,152 +685,98 @@
815
  "description_width": ""
816
  }
817
  },
818
- "201b9069e1134d5fa0cea2fa6270c27f": {
819
- "model_module": "@jupyter-widgets/controls",
820
- "model_module_version": "2.0.0",
821
- "model_name": "HTMLModel",
822
- "state": {
823
- "layout": "IPY_MODEL_a010f8415b9140fd9851f8976fa1b01a",
824
- "style": "IPY_MODEL_e8bc898cab2647f99dc9e0276a4c5802",
825
- "value": "100%"
826
- }
827
- },
828
- "2524bedd5427411a9190237d797e2185": {
829
- "model_module": "@jupyter-widgets/base",
830
- "model_module_version": "2.0.0",
831
- "model_name": "LayoutModel",
832
- "state": {}
833
- },
834
- "25dd92e9748b478586a15a3b2115b106": {
835
- "model_module": "@jupyter-widgets/base",
836
- "model_module_version": "2.0.0",
837
- "model_name": "LayoutModel",
838
- "state": {}
839
- },
840
- "293e634149a84e368597d71b93e9028d": {
841
- "model_module": "@jupyter-widgets/controls",
842
- "model_module_version": "2.0.0",
843
- "model_name": "HTMLModel",
844
- "state": {
845
- "layout": "IPY_MODEL_83fb5c716e7f4ca0bd2f957f71bd76c3",
846
- "style": "IPY_MODEL_cba3272c3ca04cc6b44412aeb7b03d6e",
847
- "value": "100%"
848
- }
849
- },
850
- "295482d5db12405c806572738cbff31e": {
851
- "model_module": "@jupyter-widgets/base",
852
- "model_module_version": "2.0.0",
853
- "model_name": "LayoutModel",
854
- "state": {}
855
- },
856
- "2a9e6e02eea34005972127793e52a1b9": {
857
- "model_module": "@jupyter-widgets/base",
858
- "model_module_version": "2.0.0",
859
- "model_name": "LayoutModel",
860
- "state": {}
861
- },
862
- "2b8f557e0a9d44a4916ae94e68829d91": {
863
  "model_module": "@jupyter-widgets/controls",
864
  "model_module_version": "2.0.0",
865
- "model_name": "HBoxModel",
866
  "state": {
867
- "children": [
868
- "IPY_MODEL_9cafe2f9352e4142aaa6aae33fd113fe",
869
- "IPY_MODEL_90daa5625664457289fda9a570b1399e",
870
- "IPY_MODEL_77f335d26be2432397efb1303bb698c1"
871
- ],
872
- "layout": "IPY_MODEL_933323d0cd844d7eae9b833c9bfcbc7a"
873
  }
874
  },
875
- "2f86f510a39f4e00be046ec19b1e43d8": {
876
  "model_module": "@jupyter-widgets/base",
877
  "model_module_version": "2.0.0",
878
  "model_name": "LayoutModel",
879
  "state": {}
880
  },
881
- "310133afa8104798a90c9518716b96dc": {
882
  "model_module": "@jupyter-widgets/base",
883
  "model_module_version": "2.0.0",
884
  "model_name": "LayoutModel",
885
  "state": {}
886
  },
887
- "31aacb49170c41faac563c20843afc7a": {
888
  "model_module": "@jupyter-widgets/base",
889
  "model_module_version": "2.0.0",
890
  "model_name": "LayoutModel",
891
  "state": {}
892
  },
893
- "31ee00614a4b4fefb4809515404b87c6": {
894
- "model_module": "@jupyter-widgets/controls",
895
- "model_module_version": "2.0.0",
896
- "model_name": "ProgressStyleModel",
897
- "state": {
898
- "description_width": ""
899
- }
900
- },
901
- "322d906591404273865850242dd3b52a": {
902
  "model_module": "@jupyter-widgets/controls",
903
  "model_module_version": "2.0.0",
904
  "model_name": "FloatProgressModel",
905
  "state": {
906
  "bar_style": "success",
907
- "layout": "IPY_MODEL_60bd806842d64d68bf497250d9782f23",
908
- "max": 24,
909
- "style": "IPY_MODEL_63c86c8b3ccc424f9227cf7a02e0abb2",
910
- "value": 24
911
  }
912
  },
913
- "332c34d536a54480a2c12968458c52e6": {
914
  "model_module": "@jupyter-widgets/controls",
915
  "model_module_version": "2.0.0",
916
- "model_name": "HTMLStyleModel",
917
  "state": {
918
- "description_width": "",
919
- "font_size": null,
920
- "text_color": null
921
  }
922
  },
923
- "3a82b029a4f7464d96fd6d533ddebfe4": {
924
  "model_module": "@jupyter-widgets/controls",
925
  "model_module_version": "2.0.0",
926
  "model_name": "HTMLModel",
927
  "state": {
928
- "layout": "IPY_MODEL_d51f5d6d7b414d9e9fa1bdc59f1fed40",
929
- "style": "IPY_MODEL_6873664e4ee749ee91a1955d9d7a3a5e",
930
- "value": "100%"
931
  }
932
  },
933
- "3b1bc675acca4abb806a7370b81a0f80": {
934
  "model_module": "@jupyter-widgets/controls",
935
  "model_module_version": "2.0.0",
936
- "model_name": "HTMLStyleModel",
937
  "state": {
938
- "description_width": "",
939
- "font_size": null,
940
- "text_color": null
 
 
 
941
  }
942
  },
943
- "3dd67e3cdbfb43c2972f6cd90621d43d": {
944
- "model_module": "@jupyter-widgets/controls",
945
  "model_module_version": "2.0.0",
946
- "model_name": "HTMLStyleModel",
947
- "state": {
948
- "description_width": "",
949
- "font_size": null,
950
- "text_color": null
951
- }
952
  },
953
- "3f0ac448c3c34e0d8b123118eb7933aa": {
954
- "model_module": "@jupyter-widgets/controls",
955
  "model_module_version": "2.0.0",
956
- "model_name": "HTMLStyleModel",
957
- "state": {
958
- "description_width": "",
959
- "font_size": null,
960
- "text_color": null
961
- }
 
 
962
  },
963
- "3f64ef306500456db218c844a340f0bf": {
964
  "model_module": "@jupyter-widgets/controls",
965
  "model_module_version": "2.0.0",
966
  "model_name": "HTMLStyleModel",
@@ -970,1522 +786,41 @@
970
  "text_color": null
971
  }
972
  },
973
- "404225735437479eb515d35385c64566": {
974
- "model_module": "@jupyter-widgets/controls",
975
- "model_module_version": "2.0.0",
976
- "model_name": "FloatProgressModel",
977
- "state": {
978
- "layout": "IPY_MODEL_6bda5d4f28994279bee7738cfa44b4fd",
979
- "max": 16,
980
- "style": "IPY_MODEL_71fd39baf4074c9e8179af717aeaf2db",
981
- "value": 7
982
- }
983
- },
984
- "41d948f60f0e4c64bfa963937192ff05": {
985
  "model_module": "@jupyter-widgets/base",
986
  "model_module_version": "2.0.0",
987
  "model_name": "LayoutModel",
988
  "state": {}
989
  },
990
- "43c6a60f2f2040a8a005c462cf36eb02": {
991
- "model_module": "@jupyter-widgets/controls",
992
- "model_module_version": "2.0.0",
993
- "model_name": "HBoxModel",
994
- "state": {
995
- "children": [
996
- "IPY_MODEL_50cb1dd6ac2b4816991021e7354707fa",
997
- "IPY_MODEL_72ea9ce39e954fb88be19c28273e595d",
998
- "IPY_MODEL_9ec6a648dab147cf9a909aadab83e895"
999
- ],
1000
- "layout": "IPY_MODEL_31aacb49170c41faac563c20843afc7a"
1001
- }
1002
- },
1003
- "467b0af2f3a14af783422d4c1ffe2e37": {
1004
  "model_module": "@jupyter-widgets/base",
1005
  "model_module_version": "2.0.0",
1006
  "model_name": "LayoutModel",
1007
  "state": {}
1008
  },
1009
- "4a33b3716b0941c3b586ee9b92fe0d58": {
1010
- "model_module": "@jupyter-widgets/controls",
1011
- "model_module_version": "2.0.0",
1012
- "model_name": "HTMLModel",
1013
- "state": {
1014
- "layout": "IPY_MODEL_8172ee05551d4cdb8b1ce670be6df434",
1015
- "style": "IPY_MODEL_959ee0a159654724a2145eb8c9d084b9",
1016
- "value": " 50%"
1017
- }
1018
- },
1019
- "4dae4e3e455443b8a5ea8bb0e38abc38": {
1020
- "model_module": "@jupyter-widgets/controls",
1021
- "model_module_version": "2.0.0",
1022
- "model_name": "HTMLModel",
1023
- "state": {
1024
- "layout": "IPY_MODEL_e172dd2b27b9474fafa071ebd346e6fd",
1025
- "style": "IPY_MODEL_e4de6f7c9c8c4afdb2c3bdeb5a1da73e",
1026
- "value": " 24/24 [00:00&lt;00:00, 6216.85it/s]"
1027
- }
1028
- },
1029
- "4ee066ad5f4d402ea048da9e8e768d77": {
1030
- "model_module": "@jupyter-widgets/controls",
1031
- "model_module_version": "2.0.0",
1032
- "model_name": "HBoxModel",
1033
- "state": {
1034
- "children": [
1035
- "IPY_MODEL_af105a5a9c654af89e361df4a79a8b18",
1036
- "IPY_MODEL_daf6d481c6ed4a13895c775d822d0242",
1037
- "IPY_MODEL_50f5402ab36c4cd0857b5e96a7eeb30f"
1038
- ],
1039
- "layout": "IPY_MODEL_a52771b4ba7a4d5dbc3fa3171beb8bc1"
1040
- }
1041
- },
1042
- "50a9ac56cb7b4b47a1ec4bec6c8f1b9f": {
1043
- "model_module": "@jupyter-widgets/controls",
1044
- "model_module_version": "2.0.0",
1045
- "model_name": "HTMLStyleModel",
1046
- "state": {
1047
- "description_width": "",
1048
- "font_size": null,
1049
- "text_color": null
1050
- }
1051
- },
1052
- "50cb1dd6ac2b4816991021e7354707fa": {
1053
- "model_module": "@jupyter-widgets/controls",
1054
  "model_module_version": "2.0.0",
1055
- "model_name": "HTMLModel",
1056
- "state": {
1057
- "layout": "IPY_MODEL_8f389f61d8574799be79de57b9da9c7f",
1058
- "style": "IPY_MODEL_68c71b79cde946048532cb1745de0162",
1059
- "value": "100%"
1060
- }
1061
  },
1062
- "50f5402ab36c4cd0857b5e96a7eeb30f": {
1063
  "model_module": "@jupyter-widgets/controls",
1064
  "model_module_version": "2.0.0",
1065
  "model_name": "HTMLModel",
1066
  "state": {
1067
- "layout": "IPY_MODEL_0dc8cccaddd3466685f62cf530a2e32d",
1068
- "style": "IPY_MODEL_af0f83766b264249b04fe32a9c278013",
1069
- "value": " 30/30 [00:00&lt;00:00,6255.49it/s]"
1070
  }
1071
  },
1072
- "52d1c4450d2c482a81be7167674e59fd": {
1073
- "model_module": "@jupyter-widgets/controls",
1074
- "model_module_version": "2.0.0",
1075
- "model_name": "HTMLModel",
1076
- "state": {
1077
- "layout": "IPY_MODEL_0b1640f03887470d8db0697f71b279a5",
1078
- "style": "IPY_MODEL_bdcb506bd5304193898a0d69b84696b4",
1079
- "value": " 28/28 [00:00&lt;00:00, 6071.47it/s]"
1080
- }
1081
- },
1082
- "532d767b9d3b4a11a17dce8f1688ed9b": {
1083
- "model_module": "@jupyter-widgets/controls",
1084
- "model_module_version": "2.0.0",
1085
- "model_name": "ProgressStyleModel",
1086
- "state": {
1087
- "description_width": ""
1088
- }
1089
- },
1090
- "53a8a534e65c49ea95f28c4383c62e77": {
1091
- "model_module": "@jupyter-widgets/controls",
1092
- "model_module_version": "2.0.0",
1093
- "model_name": "HTMLModel",
1094
- "state": {
1095
- "layout": "IPY_MODEL_d20a28ec1fa5450aaa3116f57a4969f2",
1096
- "style": "IPY_MODEL_e7a0e0cbfdb44f8ebaaab4898eb7e5bb",
1097
- "value": " 7/16 [00:14&lt;00:00, 36.25it/s]"
1098
- }
1099
- },
1100
- "56acbad3ec18465389c8084e847b5d1e": {
1101
- "model_module": "@jupyter-widgets/controls",
1102
- "model_module_version": "2.0.0",
1103
- "model_name": "HTMLModel",
1104
- "state": {
1105
- "layout": "IPY_MODEL_310133afa8104798a90c9518716b96dc",
1106
- "style": "IPY_MODEL_cd244af01c3e4707a75fa3427199f298",
1107
- "value": "100%"
1108
- }
1109
- },
1110
- "56d7aab73ad546698d12e1190ebf89d3": {
1111
- "model_module": "@jupyter-widgets/controls",
1112
- "model_module_version": "2.0.0",
1113
- "model_name": "HTMLStyleModel",
1114
- "state": {
1115
- "description_width": "",
1116
- "font_size": null,
1117
- "text_color": null
1118
- }
1119
- },
1120
- "56f11c401d9749df8743fd8126f2e376": {
1121
- "model_module": "@jupyter-widgets/base",
1122
- "model_module_version": "2.0.0",
1123
- "model_name": "LayoutModel",
1124
- "state": {}
1125
- },
1126
- "57b5d706248f4a048a0840b13eab6933": {
1127
- "model_module": "@jupyter-widgets/base",
1128
- "model_module_version": "2.0.0",
1129
- "model_name": "LayoutModel",
1130
- "state": {}
1131
- },
1132
- "58075d0c5c1d431dba009b2e92efb09b": {
1133
- "model_module": "@jupyter-widgets/base",
1134
- "model_module_version": "2.0.0",
1135
- "model_name": "LayoutModel",
1136
- "state": {}
1137
- },
1138
- "59e96468b0ab4f2daf3ba677a2af75be": {
1139
- "model_module": "@jupyter-widgets/base",
1140
- "model_module_version": "2.0.0",
1141
- "model_name": "LayoutModel",
1142
- "state": {}
1143
- },
1144
- "5b762a3b8d8c408f881e23040afe9d4d": {
1145
- "model_module": "@jupyter-widgets/base",
1146
- "model_module_version": "2.0.0",
1147
- "model_name": "LayoutModel",
1148
- "state": {}
1149
- },
1150
- "5cd1c2a9176243b89760cfdc3370846a": {
1151
- "model_module": "@jupyter-widgets/controls",
1152
- "model_module_version": "2.0.0",
1153
- "model_name": "FloatProgressModel",
1154
- "state": {
1155
- "bar_style": "success",
1156
- "layout": "IPY_MODEL_a7bc7584ec024e2caaefcd0e230540b6",
1157
- "max": 19,
1158
- "style": "IPY_MODEL_804fc20e748c49328ed856d47b7d19ea",
1159
- "value": 19
1160
- }
1161
- },
1162
- "5d5b786ef5824065bbaf0ade2f10ff97": {
1163
- "model_module": "@jupyter-widgets/base",
1164
- "model_module_version": "2.0.0",
1165
- "model_name": "LayoutModel",
1166
- "state": {}
1167
- },
1168
- "5e79b7bc8b4340ff9d35755ba859a2ba": {
1169
- "model_module": "@jupyter-widgets/controls",
1170
- "model_module_version": "2.0.0",
1171
- "model_name": "HBoxModel",
1172
- "state": {
1173
- "children": [
1174
- "IPY_MODEL_63b8750d1dff48e78a596175378f9376",
1175
- "IPY_MODEL_322d906591404273865850242dd3b52a",
1176
- "IPY_MODEL_a8c6939262b640b6b530e8c76959868f"
1177
- ],
1178
- "layout": "IPY_MODEL_58075d0c5c1d431dba009b2e92efb09b"
1179
- }
1180
- },
1181
- "608808626eae492fa91b0d68f47dff04": {
1182
- "model_module": "@jupyter-widgets/base",
1183
- "model_module_version": "2.0.0",
1184
- "model_name": "LayoutModel",
1185
- "state": {}
1186
- },
1187
- "60b697fdd03448cca047db6230e0f5a9": {
1188
- "model_module": "@jupyter-widgets/base",
1189
- "model_module_version": "2.0.0",
1190
- "model_name": "LayoutModel",
1191
- "state": {}
1192
- },
1193
- "60bd806842d64d68bf497250d9782f23": {
1194
- "model_module": "@jupyter-widgets/base",
1195
- "model_module_version": "2.0.0",
1196
- "model_name": "LayoutModel",
1197
- "state": {}
1198
- },
1199
- "62719a7465b345979bb2459d04cebef4": {
1200
- "model_module": "@jupyter-widgets/base",
1201
- "model_module_version": "2.0.0",
1202
- "model_name": "LayoutModel",
1203
- "state": {}
1204
- },
1205
- "63083946b8b84267b420430d950b1930": {
1206
- "model_module": "@jupyter-widgets/base",
1207
- "model_module_version": "2.0.0",
1208
- "model_name": "LayoutModel",
1209
- "state": {}
1210
- },
1211
- "633906c1efea4d78b6d3c80c8dabe668": {
1212
- "model_module": "@jupyter-widgets/controls",
1213
- "model_module_version": "2.0.0",
1214
- "model_name": "HTMLStyleModel",
1215
- "state": {
1216
- "description_width": "",
1217
- "font_size": null,
1218
- "text_color": null
1219
- }
1220
- },
1221
- "63b8750d1dff48e78a596175378f9376": {
1222
- "model_module": "@jupyter-widgets/controls",
1223
- "model_module_version": "2.0.0",
1224
- "model_name": "HTMLModel",
1225
- "state": {
1226
- "layout": "IPY_MODEL_5b762a3b8d8c408f881e23040afe9d4d",
1227
- "style": "IPY_MODEL_dfc93a33fc944a93a224115c6b51164d",
1228
- "value": "100%"
1229
- }
1230
- },
1231
- "63c86c8b3ccc424f9227cf7a02e0abb2": {
1232
- "model_module": "@jupyter-widgets/controls",
1233
- "model_module_version": "2.0.0",
1234
- "model_name": "ProgressStyleModel",
1235
- "state": {
1236
- "description_width": ""
1237
- }
1238
- },
1239
- "647972b9d960422db9c8fd95cdfe4535": {
1240
- "model_module": "@jupyter-widgets/controls",
1241
- "model_module_version": "2.0.0",
1242
- "model_name": "HTMLModel",
1243
- "state": {
1244
- "layout": "IPY_MODEL_b3141d40ec414bb7b062ec6a624a582b",
1245
- "style": "IPY_MODEL_fe5718022ac24b5b9a0955ca9c48dad1",
1246
- "value": "100%"
1247
- }
1248
- },
1249
- "64cc1c7586df4f8aba71918709f35f44": {
1250
- "model_module": "@jupyter-widgets/base",
1251
- "model_module_version": "2.0.0",
1252
- "model_name": "LayoutModel",
1253
- "state": {}
1254
- },
1255
- "654d558cb845478a8603eb1390370944": {
1256
- "model_module": "@jupyter-widgets/controls",
1257
- "model_module_version": "2.0.0",
1258
- "model_name": "ProgressStyleModel",
1259
- "state": {
1260
- "description_width": ""
1261
- }
1262
- },
1263
- "6568ffaad27a4ce3bb540f1fc3440e10": {
1264
- "model_module": "@jupyter-widgets/controls",
1265
- "model_module_version": "2.0.0",
1266
- "model_name": "HBoxModel",
1267
- "state": {
1268
- "children": [
1269
- "IPY_MODEL_9de20635d8a14299b600e5b74dc4ef3b",
1270
- "IPY_MODEL_068d7d8108c54a5b811dffcfaf40239e",
1271
- "IPY_MODEL_8f54ebddba784e1b964877b447e6baa6"
1272
- ],
1273
- "layout": "IPY_MODEL_64cc1c7586df4f8aba71918709f35f44"
1274
- }
1275
- },
1276
- "675e3757f1c448b6808ee2bcef0674af": {
1277
- "model_module": "@jupyter-widgets/controls",
1278
- "model_module_version": "2.0.0",
1279
- "model_name": "HTMLStyleModel",
1280
- "state": {
1281
- "description_width": "",
1282
- "font_size": null,
1283
- "text_color": null
1284
- }
1285
- },
1286
- "6873664e4ee749ee91a1955d9d7a3a5e": {
1287
- "model_module": "@jupyter-widgets/controls",
1288
- "model_module_version": "2.0.0",
1289
- "model_name": "HTMLStyleModel",
1290
- "state": {
1291
- "description_width": "",
1292
- "font_size": null,
1293
- "text_color": null
1294
- }
1295
- },
1296
- "68c71b79cde946048532cb1745de0162": {
1297
- "model_module": "@jupyter-widgets/controls",
1298
- "model_module_version": "2.0.0",
1299
- "model_name": "HTMLStyleModel",
1300
- "state": {
1301
- "description_width": "",
1302
- "font_size": null,
1303
- "text_color": null
1304
- }
1305
- },
1306
- "6b66b2d61eed4e909d292586b67b6658": {
1307
- "model_module": "@jupyter-widgets/controls",
1308
- "model_module_version": "2.0.0",
1309
- "model_name": "HTMLStyleModel",
1310
- "state": {
1311
- "description_width": "",
1312
- "font_size": null,
1313
- "text_color": null
1314
- }
1315
- },
1316
- "6bda5d4f28994279bee7738cfa44b4fd": {
1317
- "model_module": "@jupyter-widgets/base",
1318
- "model_module_version": "2.0.0",
1319
- "model_name": "LayoutModel",
1320
- "state": {}
1321
- },
1322
- "6e600c724d3a4dc1a9a6eb526eaffe5a": {
1323
- "model_module": "@jupyter-widgets/controls",
1324
- "model_module_version": "2.0.0",
1325
- "model_name": "HTMLStyleModel",
1326
- "state": {
1327
- "description_width": "",
1328
- "font_size": null,
1329
- "text_color": null
1330
- }
1331
- },
1332
- "7069efff195840d2b4008ed452839775": {
1333
- "model_module": "@jupyter-widgets/base",
1334
- "model_module_version": "2.0.0",
1335
- "model_name": "LayoutModel",
1336
- "state": {}
1337
- },
1338
- "70aa20bc35f54b12b7b7dd52064adaa4": {
1339
- "model_module": "@jupyter-widgets/controls",
1340
- "model_module_version": "2.0.0",
1341
- "model_name": "FloatProgressModel",
1342
- "state": {
1343
- "bar_style": "success",
1344
- "layout": "IPY_MODEL_7bdff38a044f46b59128ac58175b363f",
1345
- "max": 25,
1346
- "style": "IPY_MODEL_31ee00614a4b4fefb4809515404b87c6",
1347
- "value": 25
1348
- }
1349
- },
1350
- "712b5171e22e4d298a1f95da52aef92e": {
1351
- "model_module": "@jupyter-widgets/controls",
1352
- "model_module_version": "2.0.0",
1353
- "model_name": "FloatProgressModel",
1354
- "state": {
1355
- "bar_style": "success",
1356
- "layout": "IPY_MODEL_13f57927f07149a3b5eaee9a4de745fc",
1357
- "max": 19,
1358
- "style": "IPY_MODEL_654d558cb845478a8603eb1390370944",
1359
- "value": 19
1360
- }
1361
- },
1362
- "71a242330b844e449df0f64b2f978db7": {
1363
- "model_module": "@jupyter-widgets/controls",
1364
- "model_module_version": "2.0.0",
1365
- "model_name": "ProgressStyleModel",
1366
- "state": {
1367
- "description_width": ""
1368
- }
1369
- },
1370
- "71fd39baf4074c9e8179af717aeaf2db": {
1371
- "model_module": "@jupyter-widgets/controls",
1372
- "model_module_version": "2.0.0",
1373
- "model_name": "ProgressStyleModel",
1374
- "state": {
1375
- "description_width": ""
1376
- }
1377
- },
1378
- "72ea9ce39e954fb88be19c28273e595d": {
1379
- "model_module": "@jupyter-widgets/controls",
1380
- "model_module_version": "2.0.0",
1381
- "model_name": "FloatProgressModel",
1382
- "state": {
1383
- "bar_style": "success",
1384
- "layout": "IPY_MODEL_ed014a43707a4ac099f4d3f135b9ae80",
1385
- "max": 30,
1386
- "style": "IPY_MODEL_7ab0ca6df2174cdbaad9417e745f8d4b",
1387
- "value": 30
1388
- }
1389
- },
1390
- "73bc039f53694da9ab33d38f3105ff84": {
1391
- "model_module": "@jupyter-widgets/base",
1392
- "model_module_version": "2.0.0",
1393
- "model_name": "LayoutModel",
1394
- "state": {}
1395
- },
1396
- "74c767383218458094552abeda7cf5a8": {
1397
- "model_module": "@jupyter-widgets/base",
1398
- "model_module_version": "2.0.0",
1399
- "model_name": "LayoutModel",
1400
- "state": {}
1401
- },
1402
- "771258f2a06841048273512fb2b92a74": {
1403
- "model_module": "@jupyter-widgets/controls",
1404
- "model_module_version": "2.0.0",
1405
- "model_name": "HTMLStyleModel",
1406
- "state": {
1407
- "description_width": "",
1408
- "font_size": null,
1409
- "text_color": null
1410
- }
1411
- },
1412
- "775d65fcddfa4df98744cbed7af5047b": {
1413
- "model_module": "@jupyter-widgets/controls",
1414
- "model_module_version": "2.0.0",
1415
- "model_name": "HTMLStyleModel",
1416
- "state": {
1417
- "description_width": "",
1418
- "font_size": null,
1419
- "text_color": null
1420
- }
1421
- },
1422
- "77f335d26be2432397efb1303bb698c1": {
1423
- "model_module": "@jupyter-widgets/controls",
1424
- "model_module_version": "2.0.0",
1425
- "model_name": "HTMLModel",
1426
- "state": {
1427
- "layout": "IPY_MODEL_784a28847f1949dfafeb9b522357f35a",
1428
- "style": "IPY_MODEL_6e600c724d3a4dc1a9a6eb526eaffe5a",
1429
- "value": " 21/21 [00:00&lt;00:00, 4597.82it/s]"
1430
- }
1431
- },
1432
- "784a28847f1949dfafeb9b522357f35a": {
1433
- "model_module": "@jupyter-widgets/base",
1434
- "model_module_version": "2.0.0",
1435
- "model_name": "LayoutModel",
1436
- "state": {}
1437
- },
1438
- "79cb3d063c1f4c30a06980674c9cb75b": {
1439
- "model_module": "@jupyter-widgets/controls",
1440
- "model_module_version": "2.0.0",
1441
- "model_name": "HTMLModel",
1442
- "state": {
1443
- "layout": "IPY_MODEL_8705a5cdd2724831898adc95b6bac5ea",
1444
- "style": "IPY_MODEL_98227771dc6444e6a6cf6cc3969ff139",
1445
- "value": " 22/22 [00:00&lt;00:00, 4719.93it/s]"
1446
- }
1447
- },
1448
- "7a1b1f4cbceb41e09dad9b8724d74046": {
1449
- "model_module": "@jupyter-widgets/controls",
1450
- "model_module_version": "2.0.0",
1451
- "model_name": "HTMLModel",
1452
- "state": {
1453
- "layout": "IPY_MODEL_d81089cf727e4dc197b8556d832ad319",
1454
- "style": "IPY_MODEL_50a9ac56cb7b4b47a1ec4bec6c8f1b9f",
1455
- "value": "  0%"
1456
- }
1457
- },
1458
- "7a5dabbab74a4cfdaebba473209a986e": {
1459
- "model_module": "@jupyter-widgets/controls",
1460
- "model_module_version": "2.0.0",
1461
- "model_name": "HTMLModel",
1462
- "state": {
1463
- "layout": "IPY_MODEL_1191615f21194ca48fb25f9533117b87",
1464
- "style": "IPY_MODEL_3f64ef306500456db218c844a340f0bf",
1465
- "value": "100%"
1466
- }
1467
- },
1468
- "7a95a0bbf7cb44e7a52c9a15f1931e77": {
1469
- "model_module": "@jupyter-widgets/controls",
1470
- "model_module_version": "2.0.0",
1471
- "model_name": "HTMLStyleModel",
1472
- "state": {
1473
- "description_width": "",
1474
- "font_size": null,
1475
- "text_color": null
1476
- }
1477
- },
1478
- "7ab0ca6df2174cdbaad9417e745f8d4b": {
1479
- "model_module": "@jupyter-widgets/controls",
1480
- "model_module_version": "2.0.0",
1481
- "model_name": "ProgressStyleModel",
1482
- "state": {
1483
- "description_width": ""
1484
- }
1485
- },
1486
- "7b66585299d44751a2913a1311245c98": {
1487
- "model_module": "@jupyter-widgets/controls",
1488
- "model_module_version": "2.0.0",
1489
- "model_name": "HTMLModel",
1490
- "state": {
1491
- "layout": "IPY_MODEL_59e96468b0ab4f2daf3ba677a2af75be",
1492
- "style": "IPY_MODEL_775d65fcddfa4df98744cbed7af5047b",
1493
- "value": " 19/19 [00:00&lt;00:00, 4907.73it/s]"
1494
- }
1495
- },
1496
- "7bdff38a044f46b59128ac58175b363f": {
1497
- "model_module": "@jupyter-widgets/base",
1498
- "model_module_version": "2.0.0",
1499
- "model_name": "LayoutModel",
1500
- "state": {}
1501
- },
1502
- "7fa6e2baf01f48758b14ecff82b6b66a": {
1503
- "model_module": "@jupyter-widgets/base",
1504
- "model_module_version": "2.0.0",
1505
- "model_name": "LayoutModel",
1506
- "state": {}
1507
- },
1508
- "8035368fdc6a49e1af25ca1b63934af5": {
1509
- "model_module": "@jupyter-widgets/base",
1510
- "model_module_version": "2.0.0",
1511
- "model_name": "LayoutModel",
1512
- "state": {}
1513
- },
1514
- "804fc20e748c49328ed856d47b7d19ea": {
1515
- "model_module": "@jupyter-widgets/controls",
1516
- "model_module_version": "2.0.0",
1517
- "model_name": "ProgressStyleModel",
1518
- "state": {
1519
- "description_width": ""
1520
- }
1521
- },
1522
- "80b54d27120c4447b7b71e3cfd236efd": {
1523
- "model_module": "@jupyter-widgets/controls",
1524
- "model_module_version": "2.0.0",
1525
- "model_name": "HTMLModel",
1526
- "state": {
1527
- "layout": "IPY_MODEL_a4a25dc88180447198f5a050be8405be",
1528
- "style": "IPY_MODEL_6b66b2d61eed4e909d292586b67b6658",
1529
- "value": "100%"
1530
- }
1531
- },
1532
- "8172ee05551d4cdb8b1ce670be6df434": {
1533
- "model_module": "@jupyter-widgets/base",
1534
- "model_module_version": "2.0.0",
1535
- "model_name": "LayoutModel",
1536
- "state": {}
1537
- },
1538
- "81c0b3cd02ed450b85da6325254eeeb7": {
1539
- "model_module": "@jupyter-widgets/base",
1540
- "model_module_version": "2.0.0",
1541
- "model_name": "LayoutModel",
1542
- "state": {}
1543
- },
1544
- "82be5b1d854048a7ab1139592f4b3b95": {
1545
- "model_module": "@jupyter-widgets/controls",
1546
- "model_module_version": "2.0.0",
1547
- "model_name": "HTMLModel",
1548
- "state": {
1549
- "layout": "IPY_MODEL_d5af07ad383945ee95ff113055051f4f",
1550
- "style": "IPY_MODEL_ebbe757b21d34be8b2a456a90366d590",
1551
- "value": " 25/25 [00:00&lt;00:00, 5703.74it/s]"
1552
- }
1553
- },
1554
- "838579736d9843b1b8de4a1bb2a51e0e": {
1555
- "model_module": "@jupyter-widgets/controls",
1556
- "model_module_version": "2.0.0",
1557
- "model_name": "HTMLModel",
1558
- "state": {
1559
- "layout": "IPY_MODEL_8559eedee97d402a824f10eb01e6e6d0",
1560
- "style": "IPY_MODEL_332c34d536a54480a2c12968458c52e6",
1561
- "value": "100%"
1562
- }
1563
- },
1564
- "83fb5c716e7f4ca0bd2f957f71bd76c3": {
1565
- "model_module": "@jupyter-widgets/base",
1566
- "model_module_version": "2.0.0",
1567
- "model_name": "LayoutModel",
1568
- "state": {}
1569
- },
1570
- "846febd8930547d7bf823150f4ffae3c": {
1571
- "model_module": "@jupyter-widgets/controls",
1572
- "model_module_version": "2.0.0",
1573
- "model_name": "HTMLStyleModel",
1574
- "state": {
1575
- "description_width": "",
1576
- "font_size": null,
1577
- "text_color": null
1578
- }
1579
- },
1580
- "8559eedee97d402a824f10eb01e6e6d0": {
1581
- "model_module": "@jupyter-widgets/base",
1582
- "model_module_version": "2.0.0",
1583
- "model_name": "LayoutModel",
1584
- "state": {}
1585
- },
1586
- "8705a5cdd2724831898adc95b6bac5ea": {
1587
- "model_module": "@jupyter-widgets/base",
1588
- "model_module_version": "2.0.0",
1589
- "model_name": "LayoutModel",
1590
- "state": {}
1591
- },
1592
- "89a35e74cfa549818bc55c018ec41b3c": {
1593
- "model_module": "@jupyter-widgets/controls",
1594
- "model_module_version": "2.0.0",
1595
- "model_name": "ProgressStyleModel",
1596
- "state": {
1597
- "description_width": ""
1598
- }
1599
- },
1600
- "8b1495c7cebe4bcf94888e3fe1e252e5": {
1601
- "model_module": "@jupyter-widgets/controls",
1602
- "model_module_version": "2.0.0",
1603
- "model_name": "ProgressStyleModel",
1604
- "state": {
1605
- "description_width": ""
1606
- }
1607
- },
1608
- "8b6f74e2cce947dbba9ffcdc474f7266": {
1609
- "model_module": "@jupyter-widgets/base",
1610
- "model_module_version": "2.0.0",
1611
- "model_name": "LayoutModel",
1612
- "state": {}
1613
- },
1614
- "8d94afbed6614ee0849652a2dad3f4a5": {
1615
- "model_module": "@jupyter-widgets/controls",
1616
- "model_module_version": "2.0.0",
1617
- "model_name": "HTMLModel",
1618
- "state": {
1619
- "layout": "IPY_MODEL_fdbe092b69a8442c9181ff00d44002cf",
1620
- "style": "IPY_MODEL_3b1bc675acca4abb806a7370b81a0f80",
1621
- "value": "100%"
1622
- }
1623
- },
1624
- "8f389f61d8574799be79de57b9da9c7f": {
1625
- "model_module": "@jupyter-widgets/base",
1626
- "model_module_version": "2.0.0",
1627
- "model_name": "LayoutModel",
1628
- "state": {}
1629
- },
1630
- "8f406ac3eb2b4167b88ce6fd524eff02": {
1631
- "model_module": "@jupyter-widgets/base",
1632
- "model_module_version": "2.0.0",
1633
- "model_name": "LayoutModel",
1634
- "state": {}
1635
- },
1636
- "8f54ebddba784e1b964877b447e6baa6": {
1637
- "model_module": "@jupyter-widgets/controls",
1638
- "model_module_version": "2.0.0",
1639
- "model_name": "HTMLModel",
1640
- "state": {
1641
- "layout": "IPY_MODEL_f95e7c0d663b400fa37d209004544470",
1642
- "style": "IPY_MODEL_959bb62649a2494686094b004961b7f0",
1643
- "value": " 28/28 [00:00&lt;00:00, 6803.41it/s]"
1644
- }
1645
- },
1646
- "8fa672379414479daa47f8ed7f425379": {
1647
- "model_module": "@jupyter-widgets/controls",
1648
- "model_module_version": "2.0.0",
1649
- "model_name": "HBoxModel",
1650
- "state": {
1651
- "children": [
1652
- "IPY_MODEL_d0542643d2cb4139a75cbffaecf21757",
1653
- "IPY_MODEL_bd99c05ddbbf44aab164b990128f3420",
1654
- "IPY_MODEL_79cb3d063c1f4c30a06980674c9cb75b"
1655
- ],
1656
- "layout": "IPY_MODEL_81c0b3cd02ed450b85da6325254eeeb7"
1657
- }
1658
- },
1659
- "90daa5625664457289fda9a570b1399e": {
1660
- "model_module": "@jupyter-widgets/controls",
1661
- "model_module_version": "2.0.0",
1662
- "model_name": "FloatProgressModel",
1663
- "state": {
1664
- "bar_style": "success",
1665
- "layout": "IPY_MODEL_f6ecccb08b974283aa130f95026428cb",
1666
- "max": 21,
1667
- "style": "IPY_MODEL_71a242330b844e449df0f64b2f978db7",
1668
- "value": 21
1669
- }
1670
- },
1671
- "930a863ee24b4764937d73a0d0b35c5d": {
1672
- "model_module": "@jupyter-widgets/controls",
1673
- "model_module_version": "2.0.0",
1674
- "model_name": "HTMLStyleModel",
1675
- "state": {
1676
- "description_width": "",
1677
- "font_size": null,
1678
- "text_color": null
1679
- }
1680
- },
1681
- "933323d0cd844d7eae9b833c9bfcbc7a": {
1682
- "model_module": "@jupyter-widgets/base",
1683
- "model_module_version": "2.0.0",
1684
- "model_name": "LayoutModel",
1685
- "state": {}
1686
- },
1687
- "942351909d0847628fc9064e51e9efb7": {
1688
- "model_module": "@jupyter-widgets/base",
1689
- "model_module_version": "2.0.0",
1690
- "model_name": "LayoutModel",
1691
- "state": {}
1692
- },
1693
- "959bb62649a2494686094b004961b7f0": {
1694
- "model_module": "@jupyter-widgets/controls",
1695
- "model_module_version": "2.0.0",
1696
- "model_name": "HTMLStyleModel",
1697
- "state": {
1698
- "description_width": "",
1699
- "font_size": null,
1700
- "text_color": null
1701
- }
1702
- },
1703
- "959ee0a159654724a2145eb8c9d084b9": {
1704
- "model_module": "@jupyter-widgets/controls",
1705
- "model_module_version": "2.0.0",
1706
- "model_name": "HTMLStyleModel",
1707
- "state": {
1708
- "description_width": "",
1709
- "font_size": null,
1710
- "text_color": null
1711
- }
1712
- },
1713
- "95b437973d1f40acb2d0cfeba75893bc": {
1714
- "model_module": "@jupyter-widgets/controls",
1715
- "model_module_version": "2.0.0",
1716
- "model_name": "HTMLStyleModel",
1717
- "state": {
1718
- "description_width": "",
1719
- "font_size": null,
1720
- "text_color": null
1721
- }
1722
- },
1723
- "95bb6baeb60e4aeab8359879382c8e73": {
1724
- "model_module": "@jupyter-widgets/base",
1725
- "model_module_version": "2.0.0",
1726
- "model_name": "LayoutModel",
1727
- "state": {}
1728
- },
1729
- "98227771dc6444e6a6cf6cc3969ff139": {
1730
- "model_module": "@jupyter-widgets/controls",
1731
- "model_module_version": "2.0.0",
1732
- "model_name": "HTMLStyleModel",
1733
- "state": {
1734
- "description_width": "",
1735
- "font_size": null,
1736
- "text_color": null
1737
- }
1738
- },
1739
- "9ae97351248f4fcd9d7ffec6ef6fc66a": {
1740
- "model_module": "@jupyter-widgets/controls",
1741
- "model_module_version": "2.0.0",
1742
- "model_name": "HBoxModel",
1743
- "state": {
1744
- "children": [
1745
- "IPY_MODEL_7a5dabbab74a4cfdaebba473209a986e",
1746
- "IPY_MODEL_019efd3abfaf449f90bc4e2419e97d84",
1747
- "IPY_MODEL_b4b156c02f27467bbf66edea7995d021"
1748
- ],
1749
- "layout": "IPY_MODEL_a3e101c64d4e403e9a8f0f30966d7528"
1750
- }
1751
- },
1752
- "9bfc0fbbe907411682d8f6fbd3ff3b5c": {
1753
- "model_module": "@jupyter-widgets/controls",
1754
- "model_module_version": "2.0.0",
1755
- "model_name": "ProgressStyleModel",
1756
- "state": {
1757
- "description_width": ""
1758
- }
1759
- },
1760
- "9cafe2f9352e4142aaa6aae33fd113fe": {
1761
- "model_module": "@jupyter-widgets/controls",
1762
- "model_module_version": "2.0.0",
1763
- "model_name": "HTMLModel",
1764
- "state": {
1765
- "layout": "IPY_MODEL_be2dbb8a876b475f81918be47258737a",
1766
- "style": "IPY_MODEL_1b5af72876ef4a4ea02b42370d798860",
1767
- "value": "100%"
1768
- }
1769
- },
1770
- "9de20635d8a14299b600e5b74dc4ef3b": {
1771
- "model_module": "@jupyter-widgets/controls",
1772
- "model_module_version": "2.0.0",
1773
- "model_name": "HTMLModel",
1774
- "state": {
1775
- "layout": "IPY_MODEL_57b5d706248f4a048a0840b13eab6933",
1776
- "style": "IPY_MODEL_fce806ac73224b399c8724f8c7bc97c6",
1777
- "value": "100%"
1778
- }
1779
- },
1780
- "9ec6a648dab147cf9a909aadab83e895": {
1781
- "model_module": "@jupyter-widgets/controls",
1782
- "model_module_version": "2.0.0",
1783
- "model_name": "HTMLModel",
1784
- "state": {
1785
- "layout": "IPY_MODEL_c0dc8ba9fc624f45a890b677a81527f7",
1786
- "style": "IPY_MODEL_930a863ee24b4764937d73a0d0b35c5d",
1787
- "value": " 30/30 [00:00&lt;00:00, 7320.33it/s]"
1788
- }
1789
- },
1790
- "a010f8415b9140fd9851f8976fa1b01a": {
1791
- "model_module": "@jupyter-widgets/base",
1792
- "model_module_version": "2.0.0",
1793
- "model_name": "LayoutModel",
1794
- "state": {}
1795
- },
1796
- "a0a18912938849328eaeed3a3b56e568": {
1797
- "model_module": "@jupyter-widgets/controls",
1798
- "model_module_version": "2.0.0",
1799
- "model_name": "FloatProgressModel",
1800
- "state": {
1801
- "bar_style": "success",
1802
- "layout": "IPY_MODEL_f03cd6a734044cd4a575a86860b7d027",
1803
- "max": 21,
1804
- "style": "IPY_MODEL_8b1495c7cebe4bcf94888e3fe1e252e5",
1805
- "value": 21
1806
- }
1807
- },
1808
- "a38e0664f6244c998579aa13a2ae30fe": {
1809
- "model_module": "@jupyter-widgets/controls",
1810
- "model_module_version": "2.0.0",
1811
- "model_name": "HTMLModel",
1812
- "state": {
1813
- "layout": "IPY_MODEL_2f86f510a39f4e00be046ec19b1e43d8",
1814
- "style": "IPY_MODEL_0cf24b3f362a423f9ec09410b2da7ab9",
1815
- "value": " 16/16 [00:00&lt;00:00, 3303.58it/s]"
1816
- }
1817
- },
1818
- "a3e101c64d4e403e9a8f0f30966d7528": {
1819
- "model_module": "@jupyter-widgets/base",
1820
- "model_module_version": "2.0.0",
1821
- "model_name": "LayoutModel",
1822
- "state": {}
1823
- },
1824
- "a4a25dc88180447198f5a050be8405be": {
1825
- "model_module": "@jupyter-widgets/base",
1826
- "model_module_version": "2.0.0",
1827
- "model_name": "LayoutModel",
1828
- "state": {}
1829
- },
1830
- "a52771b4ba7a4d5dbc3fa3171beb8bc1": {
1831
- "model_module": "@jupyter-widgets/base",
1832
- "model_module_version": "2.0.0",
1833
- "model_name": "LayoutModel",
1834
- "state": {}
1835
- },
1836
- "a749689397134443af37b1ccfa7d8e22": {
1837
- "model_module": "@jupyter-widgets/base",
1838
- "model_module_version": "2.0.0",
1839
- "model_name": "LayoutModel",
1840
- "state": {}
1841
- },
1842
- "a754ff99a9e944f5bb77346fa5c7f123": {
1843
- "model_module": "@jupyter-widgets/controls",
1844
- "model_module_version": "2.0.0",
1845
- "model_name": "HBoxModel",
1846
- "state": {
1847
- "children": [
1848
- "IPY_MODEL_647972b9d960422db9c8fd95cdfe4535",
1849
- "IPY_MODEL_712b5171e22e4d298a1f95da52aef92e",
1850
- "IPY_MODEL_e3d303158a894b048f99bf8984a6692a"
1851
- ],
1852
- "layout": "IPY_MODEL_e13edb15c632454c9310b053d1e7bbc0"
1853
- }
1854
- },
1855
- "a7bc7584ec024e2caaefcd0e230540b6": {
1856
- "model_module": "@jupyter-widgets/base",
1857
- "model_module_version": "2.0.0",
1858
- "model_name": "LayoutModel",
1859
- "state": {}
1860
- },
1861
- "a7c3f7819f1b47eea4b42edaac6b1da6": {
1862
- "model_module": "@jupyter-widgets/controls",
1863
- "model_module_version": "2.0.0",
1864
- "model_name": "HBoxModel",
1865
- "state": {
1866
- "children": [
1867
- "IPY_MODEL_838579736d9843b1b8de4a1bb2a51e0e",
1868
- "IPY_MODEL_0cb5caf71dc4422ba63c318519d70091",
1869
- "IPY_MODEL_82be5b1d854048a7ab1139592f4b3b95"
1870
- ],
1871
- "layout": "IPY_MODEL_5d5b786ef5824065bbaf0ade2f10ff97"
1872
- }
1873
- },
1874
- "a828884198844f77817f20f9e1170c52": {
1875
- "model_module": "@jupyter-widgets/controls",
1876
- "model_module_version": "2.0.0",
1877
- "model_name": "HTMLModel",
1878
- "state": {
1879
- "layout": "IPY_MODEL_b02bad64890347c19336c3d74e8a7fe4",
1880
- "style": "IPY_MODEL_f0c93b13e434427898f8f87f8aa3ef25",
1881
- "value": " 8/16 [00:26&lt;00:00, 33.20it/s]"
1882
- }
1883
- },
1884
- "a8c6939262b640b6b530e8c76959868f": {
1885
- "model_module": "@jupyter-widgets/controls",
1886
- "model_module_version": "2.0.0",
1887
- "model_name": "HTMLModel",
1888
- "state": {
1889
- "layout": "IPY_MODEL_608808626eae492fa91b0d68f47dff04",
1890
- "style": "IPY_MODEL_3dd67e3cdbfb43c2972f6cd90621d43d",
1891
- "value": " 24/24 [00:00&lt;00:00, 5641.30it/s]"
1892
- }
1893
- },
1894
- "a8c890c01841474aa7bc13026223fb0f": {
1895
- "model_module": "@jupyter-widgets/controls",
1896
- "model_module_version": "2.0.0",
1897
- "model_name": "ProgressStyleModel",
1898
- "state": {
1899
- "description_width": ""
1900
- }
1901
- },
1902
- "aa81b75260164f4ea21dd43717be0ecd": {
1903
- "model_module": "@jupyter-widgets/controls",
1904
- "model_module_version": "2.0.0",
1905
- "model_name": "ProgressStyleModel",
1906
- "state": {
1907
- "description_width": ""
1908
- }
1909
- },
1910
- "af0f83766b264249b04fe32a9c278013": {
1911
- "model_module": "@jupyter-widgets/controls",
1912
- "model_module_version": "2.0.0",
1913
- "model_name": "HTMLStyleModel",
1914
- "state": {
1915
- "description_width": "",
1916
- "font_size": null,
1917
- "text_color": null
1918
- }
1919
- },
1920
- "af105a5a9c654af89e361df4a79a8b18": {
1921
- "model_module": "@jupyter-widgets/controls",
1922
- "model_module_version": "2.0.0",
1923
- "model_name": "HTMLModel",
1924
- "state": {
1925
- "layout": "IPY_MODEL_064928844e9a4e7e922d917d81e44ff8",
1926
- "style": "IPY_MODEL_56d7aab73ad546698d12e1190ebf89d3",
1927
- "value": "100%"
1928
- }
1929
- },
1930
- "afd1e2cdc57b4d4a98c877c4653e0172": {
1931
- "model_module": "@jupyter-widgets/controls",
1932
- "model_module_version": "2.0.0",
1933
- "model_name": "HTMLStyleModel",
1934
- "state": {
1935
- "description_width": "",
1936
- "font_size": null,
1937
- "text_color": null
1938
- }
1939
- },
1940
- "b02bad64890347c19336c3d74e8a7fe4": {
1941
- "model_module": "@jupyter-widgets/base",
1942
- "model_module_version": "2.0.0",
1943
- "model_name": "LayoutModel",
1944
- "state": {}
1945
- },
1946
- "b1a6d4e3356745ae958ff6446309c1d2": {
1947
- "model_module": "@jupyter-widgets/base",
1948
- "model_module_version": "2.0.0",
1949
- "model_name": "LayoutModel",
1950
- "state": {}
1951
- },
1952
- "b3141d40ec414bb7b062ec6a624a582b": {
1953
- "model_module": "@jupyter-widgets/base",
1954
- "model_module_version": "2.0.0",
1955
- "model_name": "LayoutModel",
1956
- "state": {}
1957
- },
1958
- "b4b156c02f27467bbf66edea7995d021": {
1959
- "model_module": "@jupyter-widgets/controls",
1960
- "model_module_version": "2.0.0",
1961
- "model_name": "HTMLModel",
1962
- "state": {
1963
- "layout": "IPY_MODEL_f42a7f7b438a4d0094338b4f0ea4c693",
1964
- "style": "IPY_MODEL_846febd8930547d7bf823150f4ffae3c",
1965
- "value": " 22/22 [00:00&lt;00:00, 4752.26it/s]"
1966
- }
1967
- },
1968
- "b6a5756b0fa947afb2feeb22d11561fb": {
1969
- "model_module": "@jupyter-widgets/controls",
1970
- "model_module_version": "2.0.0",
1971
- "model_name": "HBoxModel",
1972
- "state": {
1973
- "children": [
1974
- "IPY_MODEL_3a82b029a4f7464d96fd6d533ddebfe4",
1975
- "IPY_MODEL_05222193081f48b9be6bfc7d641ebb74",
1976
- "IPY_MODEL_c14549c00be84f719516191adadd76af"
1977
- ],
1978
- "layout": "IPY_MODEL_b998b321bb394e99b5da2b9e2c99fe36"
1979
- }
1980
- },
1981
- "b85fc632bd20492bbeafd934d3fa780b": {
1982
- "model_module": "@jupyter-widgets/controls",
1983
- "model_module_version": "2.0.0",
1984
- "model_name": "HTMLModel",
1985
- "state": {
1986
- "layout": "IPY_MODEL_e123b16936ce457f81878628d2d962a7",
1987
- "style": "IPY_MODEL_ce9ffc395b094eaf9137ed0f69d4c526",
1988
- "value": " 25/25 [00:00&lt;00:00, 6465.11it/s]"
1989
- }
1990
- },
1991
- "b966765fd8f74fe7914e11eec54a10b9": {
1992
- "model_module": "@jupyter-widgets/controls",
1993
- "model_module_version": "2.0.0",
1994
- "model_name": "HBoxModel",
1995
- "state": {
1996
- "children": [
1997
- "IPY_MODEL_4a33b3716b0941c3b586ee9b92fe0d58",
1998
- "IPY_MODEL_0325659ee95e49a5b91b3b5d00ed7438",
1999
- "IPY_MODEL_a828884198844f77817f20f9e1170c52"
2000
- ],
2001
- "layout": "IPY_MODEL_f03f2a5969d14a1db67bbfe9d28fa7cc"
2002
- }
2003
- },
2004
- "b98c2c2cc31f4c51931fe91d56435ca1": {
2005
- "model_module": "@jupyter-widgets/controls",
2006
- "model_module_version": "2.0.0",
2007
- "model_name": "HBoxModel",
2008
- "state": {
2009
- "children": [
2010
- "IPY_MODEL_8d94afbed6614ee0849652a2dad3f4a5",
2011
- "IPY_MODEL_5cd1c2a9176243b89760cfdc3370846a",
2012
- "IPY_MODEL_7b66585299d44751a2913a1311245c98"
2013
- ],
2014
- "layout": "IPY_MODEL_b1a6d4e3356745ae958ff6446309c1d2"
2015
- }
2016
- },
2017
- "b998b321bb394e99b5da2b9e2c99fe36": {
2018
- "model_module": "@jupyter-widgets/base",
2019
- "model_module_version": "2.0.0",
2020
- "model_name": "LayoutModel",
2021
- "state": {}
2022
- },
2023
- "b9c8d4aba50241e4873535d5253bc431": {
2024
- "model_module": "@jupyter-widgets/controls",
2025
- "model_module_version": "2.0.0",
2026
- "model_name": "ProgressStyleModel",
2027
- "state": {
2028
- "description_width": ""
2029
- }
2030
- },
2031
- "bd99c05ddbbf44aab164b990128f3420": {
2032
- "model_module": "@jupyter-widgets/controls",
2033
- "model_module_version": "2.0.0",
2034
- "model_name": "FloatProgressModel",
2035
- "state": {
2036
- "bar_style": "success",
2037
- "layout": "IPY_MODEL_8035368fdc6a49e1af25ca1b63934af5",
2038
- "max": 22,
2039
- "style": "IPY_MODEL_ddf9183cedc5426e889abf3bf4539d1e",
2040
- "value": 22
2041
- }
2042
- },
2043
- "bdcb506bd5304193898a0d69b84696b4": {
2044
- "model_module": "@jupyter-widgets/controls",
2045
- "model_module_version": "2.0.0",
2046
- "model_name": "HTMLStyleModel",
2047
- "state": {
2048
- "description_width": "",
2049
- "font_size": null,
2050
- "text_color": null
2051
- }
2052
- },
2053
- "be2dbb8a876b475f81918be47258737a": {
2054
- "model_module": "@jupyter-widgets/base",
2055
- "model_module_version": "2.0.0",
2056
- "model_name": "LayoutModel",
2057
- "state": {}
2058
- },
2059
- "c0467c436bdf4576b7072a658154b8eb": {
2060
- "model_module": "@jupyter-widgets/controls",
2061
- "model_module_version": "2.0.0",
2062
- "model_name": "FloatProgressModel",
2063
- "state": {
2064
- "bar_style": "success",
2065
- "layout": "IPY_MODEL_f156c7882d814602b5c577a8ef7eba94",
2066
- "max": 28,
2067
- "style": "IPY_MODEL_aa81b75260164f4ea21dd43717be0ecd",
2068
- "value": 28
2069
- }
2070
- },
2071
- "c080db3fe74a4fddad2f70f4c3b066c9": {
2072
- "model_module": "@jupyter-widgets/controls",
2073
- "model_module_version": "2.0.0",
2074
- "model_name": "HTMLStyleModel",
2075
- "state": {
2076
- "description_width": "",
2077
- "font_size": null,
2078
- "text_color": null
2079
- }
2080
- },
2081
- "c0dc8ba9fc624f45a890b677a81527f7": {
2082
- "model_module": "@jupyter-widgets/base",
2083
- "model_module_version": "2.0.0",
2084
- "model_name": "LayoutModel",
2085
- "state": {}
2086
- },
2087
- "c14549c00be84f719516191adadd76af": {
2088
- "model_module": "@jupyter-widgets/controls",
2089
- "model_module_version": "2.0.0",
2090
- "model_name": "HTMLModel",
2091
- "state": {
2092
- "layout": "IPY_MODEL_60b697fdd03448cca047db6230e0f5a9",
2093
- "style": "IPY_MODEL_afd1e2cdc57b4d4a98c877c4653e0172",
2094
- "value": " 16/16 [00:00&lt;00:00, 3209.72it/s]"
2095
- }
2096
- },
2097
- "c3bd6287007c4a17a79275daa2b1ae2b": {
2098
- "model_module": "@jupyter-widgets/controls",
2099
- "model_module_version": "2.0.0",
2100
- "model_name": "HTMLModel",
2101
- "state": {
2102
- "layout": "IPY_MODEL_467b0af2f3a14af783422d4c1ffe2e37",
2103
- "style": "IPY_MODEL_771258f2a06841048273512fb2b92a74",
2104
- "value": "100%"
2105
- }
2106
- },
2107
- "c6c89e3d686147bfa3a0d64a53401913": {
2108
- "model_module": "@jupyter-widgets/base",
2109
- "model_module_version": "2.0.0",
2110
- "model_name": "LayoutModel",
2111
- "state": {}
2112
- },
2113
- "cba3272c3ca04cc6b44412aeb7b03d6e": {
2114
- "model_module": "@jupyter-widgets/controls",
2115
- "model_module_version": "2.0.0",
2116
- "model_name": "HTMLStyleModel",
2117
- "state": {
2118
- "description_width": "",
2119
- "font_size": null,
2120
- "text_color": null
2121
- }
2122
- },
2123
- "cd244af01c3e4707a75fa3427199f298": {
2124
- "model_module": "@jupyter-widgets/controls",
2125
- "model_module_version": "2.0.0",
2126
- "model_name": "HTMLStyleModel",
2127
- "state": {
2128
- "description_width": "",
2129
- "font_size": null,
2130
- "text_color": null
2131
- }
2132
- },
2133
- "ce9ffc395b094eaf9137ed0f69d4c526": {
2134
- "model_module": "@jupyter-widgets/controls",
2135
- "model_module_version": "2.0.0",
2136
- "model_name": "HTMLStyleModel",
2137
- "state": {
2138
- "description_width": "",
2139
- "font_size": null,
2140
- "text_color": null
2141
- }
2142
- },
2143
- "cf2b43396da34f09b4fa9163b0d268d7": {
2144
- "model_module": "@jupyter-widgets/controls",
2145
- "model_module_version": "2.0.0",
2146
- "model_name": "HBoxModel",
2147
- "state": {
2148
- "children": [
2149
- "IPY_MODEL_12b05791535a4222830d69a025e7c76f",
2150
- "IPY_MODEL_404225735437479eb515d35385c64566",
2151
- "IPY_MODEL_53a8a534e65c49ea95f28c4383c62e77"
2152
- ],
2153
- "layout": "IPY_MODEL_e869b2e5fca443f2abce088213b5b3a3"
2154
- }
2155
- },
2156
- "d0542643d2cb4139a75cbffaecf21757": {
2157
- "model_module": "@jupyter-widgets/controls",
2158
- "model_module_version": "2.0.0",
2159
- "model_name": "HTMLModel",
2160
- "state": {
2161
- "layout": "IPY_MODEL_ee8d0ef1e6374952a0ab056b4fe78936",
2162
- "style": "IPY_MODEL_f164dc377ac14ef88d42367a75820482",
2163
- "value": "100%"
2164
- }
2165
- },
2166
- "d20a28ec1fa5450aaa3116f57a4969f2": {
2167
- "model_module": "@jupyter-widgets/base",
2168
- "model_module_version": "2.0.0",
2169
- "model_name": "LayoutModel",
2170
- "state": {}
2171
- },
2172
- "d4eab8e28aea4048b6742decdc83b75c": {
2173
- "model_module": "@jupyter-widgets/controls",
2174
- "model_module_version": "2.0.0",
2175
- "model_name": "ProgressStyleModel",
2176
- "state": {
2177
- "description_width": ""
2178
- }
2179
- },
2180
- "d51f5d6d7b414d9e9fa1bdc59f1fed40": {
2181
- "model_module": "@jupyter-widgets/base",
2182
- "model_module_version": "2.0.0",
2183
- "model_name": "LayoutModel",
2184
- "state": {}
2185
- },
2186
- "d5af07ad383945ee95ff113055051f4f": {
2187
- "model_module": "@jupyter-widgets/base",
2188
- "model_module_version": "2.0.0",
2189
- "model_name": "LayoutModel",
2190
- "state": {}
2191
- },
2192
- "d81089cf727e4dc197b8556d832ad319": {
2193
- "model_module": "@jupyter-widgets/base",
2194
- "model_module_version": "2.0.0",
2195
- "model_name": "LayoutModel",
2196
- "state": {}
2197
- },
2198
- "d854a6aa89aa4b0b85b74e6571610fa5": {
2199
- "model_module": "@jupyter-widgets/base",
2200
- "model_module_version": "2.0.0",
2201
- "model_name": "LayoutModel",
2202
- "state": {}
2203
- },
2204
- "daf6d481c6ed4a13895c775d822d0242": {
2205
- "model_module": "@jupyter-widgets/controls",
2206
- "model_module_version": "2.0.0",
2207
- "model_name": "FloatProgressModel",
2208
- "state": {
2209
- "bar_style": "success",
2210
- "layout": "IPY_MODEL_942351909d0847628fc9064e51e9efb7",
2211
- "max": 30,
2212
- "style": "IPY_MODEL_532d767b9d3b4a11a17dce8f1688ed9b",
2213
- "value": 30
2214
- }
2215
- },
2216
- "ddf9183cedc5426e889abf3bf4539d1e": {
2217
- "model_module": "@jupyter-widgets/controls",
2218
- "model_module_version": "2.0.0",
2219
- "model_name": "ProgressStyleModel",
2220
- "state": {
2221
- "description_width": ""
2222
- }
2223
- },
2224
- "dfc93a33fc944a93a224115c6b51164d": {
2225
- "model_module": "@jupyter-widgets/controls",
2226
- "model_module_version": "2.0.0",
2227
- "model_name": "HTMLStyleModel",
2228
- "state": {
2229
- "description_width": "",
2230
- "font_size": null,
2231
- "text_color": null
2232
- }
2233
- },
2234
- "e09a0c50b3bb4e2ebaba70054dcbbedb": {
2235
- "model_module": "@jupyter-widgets/controls",
2236
- "model_module_version": "2.0.0",
2237
- "model_name": "ProgressStyleModel",
2238
- "state": {
2239
- "description_width": ""
2240
- }
2241
- },
2242
- "e123b16936ce457f81878628d2d962a7": {
2243
- "model_module": "@jupyter-widgets/base",
2244
- "model_module_version": "2.0.0",
2245
- "model_name": "LayoutModel",
2246
- "state": {}
2247
- },
2248
- "e13edb15c632454c9310b053d1e7bbc0": {
2249
- "model_module": "@jupyter-widgets/base",
2250
- "model_module_version": "2.0.0",
2251
- "model_name": "LayoutModel",
2252
- "state": {}
2253
- },
2254
- "e172dd2b27b9474fafa071ebd346e6fd": {
2255
- "model_module": "@jupyter-widgets/base",
2256
- "model_module_version": "2.0.0",
2257
- "model_name": "LayoutModel",
2258
- "state": {}
2259
- },
2260
- "e177331cfd7d4d868394e0e7cc0c4f76": {
2261
- "model_module": "@jupyter-widgets/controls",
2262
- "model_module_version": "2.0.0",
2263
- "model_name": "HBoxModel",
2264
- "state": {
2265
- "children": [
2266
- "IPY_MODEL_c3bd6287007c4a17a79275daa2b1ae2b",
2267
- "IPY_MODEL_175f4a5c23fd4e33839d75ea09bd0b63",
2268
- "IPY_MODEL_4dae4e3e455443b8a5ea8bb0e38abc38"
2269
- ],
2270
- "layout": "IPY_MODEL_8f406ac3eb2b4167b88ce6fd524eff02"
2271
- }
2272
- },
2273
- "e2a61ed939434f548f885aeed891b133": {
2274
- "model_module": "@jupyter-widgets/controls",
2275
- "model_module_version": "2.0.0",
2276
- "model_name": "HBoxModel",
2277
- "state": {
2278
- "children": [
2279
- "IPY_MODEL_e70e8ca28423417ea0a6c2f799216e83",
2280
- "IPY_MODEL_05ed74a6ba944337bebcb2fac08c00de",
2281
- "IPY_MODEL_f3243b172bfd416289669c713857c8f2"
2282
- ],
2283
- "layout": "IPY_MODEL_7069efff195840d2b4008ed452839775"
2284
- }
2285
- },
2286
- "e3d303158a894b048f99bf8984a6692a": {
2287
- "model_module": "@jupyter-widgets/controls",
2288
- "model_module_version": "2.0.0",
2289
- "model_name": "HTMLModel",
2290
- "state": {
2291
- "layout": "IPY_MODEL_a749689397134443af37b1ccfa7d8e22",
2292
- "style": "IPY_MODEL_3f0ac448c3c34e0d8b123118eb7933aa",
2293
- "value": " 19/19 [00:00&lt;00:00, 4071.10it/s]"
2294
- }
2295
- },
2296
- "e4de6f7c9c8c4afdb2c3bdeb5a1da73e": {
2297
- "model_module": "@jupyter-widgets/controls",
2298
- "model_module_version": "2.0.0",
2299
- "model_name": "HTMLStyleModel",
2300
- "state": {
2301
- "description_width": "",
2302
- "font_size": null,
2303
- "text_color": null
2304
- }
2305
- },
2306
- "e70e8ca28423417ea0a6c2f799216e83": {
2307
- "model_module": "@jupyter-widgets/controls",
2308
- "model_module_version": "2.0.0",
2309
- "model_name": "HTMLModel",
2310
- "state": {
2311
- "layout": "IPY_MODEL_c6c89e3d686147bfa3a0d64a53401913",
2312
- "style": "IPY_MODEL_7a95a0bbf7cb44e7a52c9a15f1931e77",
2313
- "value": " 10%"
2314
- }
2315
- },
2316
- "e7a0e0cbfdb44f8ebaaab4898eb7e5bb": {
2317
- "model_module": "@jupyter-widgets/controls",
2318
- "model_module_version": "2.0.0",
2319
- "model_name": "HTMLStyleModel",
2320
- "state": {
2321
- "description_width": "",
2322
- "font_size": null,
2323
- "text_color": null
2324
- }
2325
- },
2326
- "e869b2e5fca443f2abce088213b5b3a3": {
2327
- "model_module": "@jupyter-widgets/base",
2328
- "model_module_version": "2.0.0",
2329
- "model_name": "LayoutModel",
2330
- "state": {}
2331
- },
2332
- "e8bc898cab2647f99dc9e0276a4c5802": {
2333
- "model_module": "@jupyter-widgets/controls",
2334
- "model_module_version": "2.0.0",
2335
- "model_name": "HTMLStyleModel",
2336
- "state": {
2337
- "description_width": "",
2338
- "font_size": null,
2339
- "text_color": null
2340
- }
2341
- },
2342
- "ebbe757b21d34be8b2a456a90366d590": {
2343
- "model_module": "@jupyter-widgets/controls",
2344
- "model_module_version": "2.0.0",
2345
- "model_name": "HTMLStyleModel",
2346
- "state": {
2347
- "description_width": "",
2348
- "font_size": null,
2349
- "text_color": null
2350
- }
2351
- },
2352
- "ed014a43707a4ac099f4d3f135b9ae80": {
2353
- "model_module": "@jupyter-widgets/base",
2354
- "model_module_version": "2.0.0",
2355
- "model_name": "LayoutModel",
2356
- "state": {}
2357
- },
2358
- "ee8d0ef1e6374952a0ab056b4fe78936": {
2359
- "model_module": "@jupyter-widgets/base",
2360
- "model_module_version": "2.0.0",
2361
- "model_name": "LayoutModel",
2362
- "state": {}
2363
- },
2364
- "f03cd6a734044cd4a575a86860b7d027": {
2365
- "model_module": "@jupyter-widgets/base",
2366
- "model_module_version": "2.0.0",
2367
- "model_name": "LayoutModel",
2368
- "state": {}
2369
- },
2370
- "f03f2a5969d14a1db67bbfe9d28fa7cc": {
2371
- "model_module": "@jupyter-widgets/base",
2372
- "model_module_version": "2.0.0",
2373
- "model_name": "LayoutModel",
2374
- "state": {}
2375
- },
2376
- "f0c93b13e434427898f8f87f8aa3ef25": {
2377
- "model_module": "@jupyter-widgets/controls",
2378
- "model_module_version": "2.0.0",
2379
- "model_name": "HTMLStyleModel",
2380
- "state": {
2381
- "description_width": "",
2382
- "font_size": null,
2383
- "text_color": null
2384
- }
2385
- },
2386
- "f156c7882d814602b5c577a8ef7eba94": {
2387
- "model_module": "@jupyter-widgets/base",
2388
- "model_module_version": "2.0.0",
2389
- "model_name": "LayoutModel",
2390
- "state": {}
2391
- },
2392
- "f164dc377ac14ef88d42367a75820482": {
2393
- "model_module": "@jupyter-widgets/controls",
2394
- "model_module_version": "2.0.0",
2395
- "model_name": "HTMLStyleModel",
2396
- "state": {
2397
- "description_width": "",
2398
- "font_size": null,
2399
- "text_color": null
2400
- }
2401
- },
2402
- "f3243b172bfd416289669c713857c8f2": {
2403
- "model_module": "@jupyter-widgets/controls",
2404
- "model_module_version": "2.0.0",
2405
- "model_name": "HTMLModel",
2406
- "state": {
2407
- "layout": "IPY_MODEL_63083946b8b84267b420430d950b1930",
2408
- "style": "IPY_MODEL_633906c1efea4d78b6d3c80c8dabe668",
2409
- "value": " 3/29 [00:25&lt;03:43,  8.59s/it]"
2410
- }
2411
- },
2412
- "f3e63e0a4fcb4754b1fc9c89b86f035d": {
2413
- "model_module": "@jupyter-widgets/controls",
2414
- "model_module_version": "2.0.0",
2415
- "model_name": "HBoxModel",
2416
- "state": {
2417
- "children": [
2418
- "IPY_MODEL_201b9069e1134d5fa0cea2fa6270c27f",
2419
- "IPY_MODEL_70aa20bc35f54b12b7b7dd52064adaa4",
2420
- "IPY_MODEL_b85fc632bd20492bbeafd934d3fa780b"
2421
- ],
2422
- "layout": "IPY_MODEL_f54524d6990e4f849d43017c03f2dee4"
2423
- }
2424
- },
2425
- "f42a7f7b438a4d0094338b4f0ea4c693": {
2426
- "model_module": "@jupyter-widgets/base",
2427
- "model_module_version": "2.0.0",
2428
- "model_name": "LayoutModel",
2429
- "state": {}
2430
- },
2431
- "f54524d6990e4f849d43017c03f2dee4": {
2432
- "model_module": "@jupyter-widgets/base",
2433
- "model_module_version": "2.0.0",
2434
- "model_name": "LayoutModel",
2435
- "state": {}
2436
- },
2437
- "f6ecccb08b974283aa130f95026428cb": {
2438
- "model_module": "@jupyter-widgets/base",
2439
- "model_module_version": "2.0.0",
2440
- "model_name": "LayoutModel",
2441
- "state": {}
2442
- },
2443
- "f95e7c0d663b400fa37d209004544470": {
2444
- "model_module": "@jupyter-widgets/base",
2445
- "model_module_version": "2.0.0",
2446
- "model_name": "LayoutModel",
2447
- "state": {}
2448
- },
2449
- "f9984d78b7ec4000a2baf41d7d4ff9d8": {
2450
- "model_module": "@jupyter-widgets/controls",
2451
- "model_module_version": "2.0.0",
2452
- "model_name": "HBoxModel",
2453
- "state": {
2454
- "children": [
2455
- "IPY_MODEL_56acbad3ec18465389c8084e847b5d1e",
2456
- "IPY_MODEL_c0467c436bdf4576b7072a658154b8eb",
2457
- "IPY_MODEL_52d1c4450d2c482a81be7167674e59fd"
2458
- ],
2459
- "layout": "IPY_MODEL_95bb6baeb60e4aeab8359879382c8e73"
2460
- }
2461
- },
2462
- "fce806ac73224b399c8724f8c7bc97c6": {
2463
- "model_module": "@jupyter-widgets/controls",
2464
- "model_module_version": "2.0.0",
2465
- "model_name": "HTMLStyleModel",
2466
- "state": {
2467
- "description_width": "",
2468
- "font_size": null,
2469
- "text_color": null
2470
- }
2471
- },
2472
- "fdbe092b69a8442c9181ff00d44002cf": {
2473
- "model_module": "@jupyter-widgets/base",
2474
  "model_module_version": "2.0.0",
2475
  "model_name": "LayoutModel",
2476
  "state": {}
2477
  },
2478
- "fe1e85dd7119422a89688939420ae705": {
2479
- "model_module": "@jupyter-widgets/controls",
2480
- "model_module_version": "2.0.0",
2481
- "model_name": "HTMLModel",
2482
- "state": {
2483
- "layout": "IPY_MODEL_25dd92e9748b478586a15a3b2115b106",
2484
- "style": "IPY_MODEL_675e3757f1c448b6808ee2bcef0674af",
2485
- "value": " 21/21 [00:00&lt;00:00, 4935.03it/s]"
2486
- }
2487
- },
2488
- "fe5718022ac24b5b9a0955ca9c48dad1": {
2489
  "model_module": "@jupyter-widgets/controls",
2490
  "model_module_version": "2.0.0",
2491
  "model_name": "HTMLStyleModel",
 
38
  {
39
  "data": {
40
  "application/vnd.jupyter.widget-view+json": {
41
+ "model_id": "b30d4d05feb144d9aaf062206dabc9c6",
42
  "version_major": 2,
43
  "version_minor": 0
44
  },
 
59
  {
60
  "data": {
61
  "application/vnd.jupyter.widget-view+json": {
62
+ "model_id": "c69a861cba7040c494f062bea15216be",
63
  "version_major": 2,
64
  "version_minor": 0
65
  },
 
80
  {
81
  "data": {
82
  "application/vnd.jupyter.widget-view+json": {
83
+ "model_id": "fe1c1d0c26394a54a3b734458f93f534",
84
  "version_major": 2,
85
  "version_minor": 0
86
  },
 
95
  "name": "stdout",
96
  "output_type": "stream",
97
  "text": [
98
+ "Atoms(symbols='N2', pbc=True, cell=[15.0, 15.001, 15.002])\n"
99
  ]
100
  },
101
  {
102
  "data": {
103
  "application/vnd.jupyter.widget-view+json": {
104
+ "model_id": "1a651919fea245d1a1461adeccbd9941",
105
  "version_major": 2,
106
  "version_minor": 0
107
  },
 
116
  "name": "stdout",
117
  "output_type": "stream",
118
  "text": [
119
+ "Atoms(symbols='O2', pbc=True, cell=[15.0, 15.001, 15.002])\n"
120
  ]
121
  },
122
  {
123
  "data": {
124
  "application/vnd.jupyter.widget-view+json": {
125
+ "model_id": "6ef80d3919514ac9828098f51d64b2c3",
126
  "version_major": 2,
127
  "version_minor": 0
128
  },
 
143
  {
144
  "data": {
145
  "application/vnd.jupyter.widget-view+json": {
146
+ "model_id": "399dc0992b304fd7a36f47864840123f",
147
  "version_major": 2,
148
  "version_minor": 0
149
  },
 
164
  {
165
  "data": {
166
  "application/vnd.jupyter.widget-view+json": {
167
+ "model_id": "2f23732a547d42df82baa6b386d371cc",
168
  "version_major": 2,
169
  "version_minor": 0
170
  },
 
185
  {
186
  "data": {
187
  "application/vnd.jupyter.widget-view+json": {
188
+ "model_id": "1c9ad8492a534483b249010062c128c4",
189
  "version_major": 2,
190
  "version_minor": 0
191
  },
 
200
  "name": "stdout",
201
  "output_type": "stream",
202
  "text": [
203
+ "Atoms(symbols='Na2', pbc=True, cell=[15.5, 15.501, 15.502])\n"
204
  ]
205
  },
206
  {
207
  "data": {
208
  "application/vnd.jupyter.widget-view+json": {
209
+ "model_id": "068f21ad734e411c9bfae2f5fd059662",
210
  "version_major": 2,
211
  "version_minor": 0
212
  },
 
221
  "name": "stdout",
222
  "output_type": "stream",
223
  "text": [
224
+ "Did not converge! See text output for help.\n",
225
  "Atoms(symbols='Cr2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
226
  ]
227
  },
228
  {
229
  "data": {
230
  "application/vnd.jupyter.widget-view+json": {
231
+ "model_id": "99d0786dd9f54142ba22c698b14418fe",
232
  "version_major": 2,
233
  "version_minor": 0
234
  },
 
322
  " restart_fpath = out_dir / 'restart.gpw'\n",
323
  "\n",
324
  " calc = GPAW(\n",
325
+ " mode=PW(2000),\n",
326
  " xc='PBE',\n",
327
  " spinpol=True,\n",
328
  " # basis='dzp'\n",
 
331
  " # nbands=0 if element.is_noble_gas else '110%',\n",
332
  " hund=False,\n",
333
  " mixer=MixerDif(0.01, 1, 1) if element.is_transition_metal else MixerDif(0.25, 3, 10),\n",
 
 
 
334
  " # eigensolver='rmm-diis', #Davidson(3), # This solver can parallelize over bands Davidson(3), #\n",
335
+ " occupations=FermiDirac(0.2, fixmagmom=False), # if not element.is_metal else FermiDirac(0.2, fixmagmom=False),\n",
 
336
  " # eigensolver=LCAOETDM(),\n",
337
  " # # searchdir_algo={'name': 'l-bfgs-p', 'memory': 10}),\n",
338
  " # occupations={'name': 'fixed-uniform'},\n",
 
346
  " 'energy': 5e-4,\n",
347
  " # 'bands': 4\n",
348
  " },\n",
 
349
  " # {'energy': 0.0005, # eV / electron\n",
350
  " # 'density': 1.0e-4, # electrons / electron\n",
351
  " # 'eigenstates': 4.0e-8, # eV^2 / electron\n",
352
  " # 'bands': 'occupied'},\n",
 
 
 
353
  " # parallel={'gpu': True},\n",
354
  " setups='paw' \n",
 
355
  " )\n",
356
  " # calc = GPAW(\n",
357
  " # mode='pw', #PW(1500),\n",
 
416
  "\n",
417
  " if fm_energy <= afm_energy:\n",
418
  " magmoms = fm_magmoms\n",
419
+ " atoms.set_initial_magnetic_moments(magmoms) \n",
420
  " # shutil.move(out_dir / \"WAVECAR_FM\", out_dir / \"WAVECAR\") \n",
421
  " else:\n",
422
  " magmoms = afm_magmoms\n",
423
+ " atoms.set_initial_magnetic_moments(magmoms)\n",
424
  " # shutil.move(out_dir / \"WAVECAR_AFM\", out_dir / \"WAVECAR\")\n",
425
  "\n",
426
+ "# if i > 0: \n",
427
+ "# magmoms = atoms.get_magnetic_moments()\n",
428
  "\n",
429
+ "# atoms.set_initial_magnetic_moments(magmoms)\n",
430
  " # m = min(abs(magmoms[0])*1.2, m)\n",
431
  " # magmoms = magmoms*m/np.abs(magmoms)\n",
432
  "\n",
 
443
  },
444
  {
445
  "cell_type": "code",
446
+ "execution_count": null,
447
  "id": "06118461-8db9-49f0-8aae-2150146ab9b5",
448
  "metadata": {
449
  "tags": []
450
  },
451
+ "outputs": [],
 
 
 
 
 
 
 
 
452
  "source": [
453
  "!echo $GPAW_NEW"
454
  ]
 
542
  "widgets": {
543
  "application/vnd.jupyter.widget-state+json": {
544
  "state": {
545
+ "08bb114ae5674fd1af84c459d1407555": {
546
  "model_module": "@jupyter-widgets/controls",
547
  "model_module_version": "2.0.0",
548
+ "model_name": "HTMLModel",
549
  "state": {
550
+ "layout": "IPY_MODEL_43a625312a50485faa2f10807c19a5c3",
551
+ "style": "IPY_MODEL_7d3e41a01d7f4a3f997b510ad7be62c7",
552
+ "value": "  0%"
 
 
553
  }
554
  },
555
+ "16d09a1085ce4b7c94d3c9838e7b6047": {
556
  "model_module": "@jupyter-widgets/controls",
557
  "model_module_version": "2.0.0",
558
+ "model_name": "ProgressStyleModel",
559
  "state": {
560
+ "description_width": ""
 
 
 
 
561
  }
562
  },
563
+ "378fd424e42c4a02a76319ddf1f4773e": {
 
 
 
 
 
 
564
  "model_module": "@jupyter-widgets/controls",
565
  "model_module_version": "2.0.0",
566
+ "model_name": "HTMLModel",
567
  "state": {
568
+ "layout": "IPY_MODEL_f6e60cbeb3a246a189de60bfddf1ea24",
569
+ "style": "IPY_MODEL_6deae131201c46af8be20e2129d17176",
570
+ "value": " 0/28 [00:00&lt;?, ?it/s]"
 
 
 
571
  }
572
  },
573
+ "398c7fc38b92419a956e17bb3f69f61f": {
574
  "model_module": "@jupyter-widgets/controls",
575
  "model_module_version": "2.0.0",
576
  "model_name": "HBoxModel",
577
  "state": {
578
  "children": [
579
+ "IPY_MODEL_9dbfeae19c864b1cb2df6c4b39bfa9c9",
580
+ "IPY_MODEL_3bb3f03b83284c0bbdc316fdc313384f",
581
+ "IPY_MODEL_378fd424e42c4a02a76319ddf1f4773e"
582
  ],
583
+ "layout": "IPY_MODEL_cd8b7bf098b84df197fcd498084e5afd"
 
 
 
 
 
 
 
 
 
 
 
 
584
  }
585
  },
586
+ "3bb3f03b83284c0bbdc316fdc313384f": {
587
  "model_module": "@jupyter-widgets/controls",
588
  "model_module_version": "2.0.0",
589
  "model_name": "FloatProgressModel",
590
  "state": {
591
+ "layout": "IPY_MODEL_c98b44b3cdfc4d1180786cf11521d9d3",
592
+ "max": 28,
593
+ "style": "IPY_MODEL_787e84a3b17d4f8ba132db1a5ed466b3"
 
 
 
 
 
 
 
 
 
 
 
 
594
  }
595
  },
596
+ "43a625312a50485faa2f10807c19a5c3": {
597
  "model_module": "@jupyter-widgets/base",
598
  "model_module_version": "2.0.0",
599
  "model_name": "LayoutModel",
600
  "state": {}
601
  },
602
+ "43e1040562d1439b801ecfedf5035aee": {
 
 
 
 
 
 
 
 
 
 
 
 
603
  "model_module": "@jupyter-widgets/controls",
604
  "model_module_version": "2.0.0",
605
+ "model_name": "HTMLStyleModel",
606
  "state": {
607
+ "description_width": "",
608
+ "font_size": null,
609
+ "text_color": null
610
  }
611
  },
612
+ "45675de1547d489d9f935cb432b4fadf": {
613
  "model_module": "@jupyter-widgets/controls",
614
  "model_module_version": "2.0.0",
615
  "model_name": "FloatProgressModel",
616
  "state": {
617
+ "bar_style": "danger",
618
+ "layout": "IPY_MODEL_4d3c75a82de345ad9d01ef5507126023",
619
+ "max": 29,
620
+ "style": "IPY_MODEL_79037b808e294df393a993227a4ff8c3"
 
621
  }
622
  },
623
+ "4cd7b5fa3e214f74a66ed4d99d5025a4": {
624
  "model_module": "@jupyter-widgets/controls",
625
  "model_module_version": "2.0.0",
626
+ "model_name": "HBoxModel",
627
  "state": {
628
+ "children": [
629
+ "IPY_MODEL_67252eabaa4348d8a3fd4cf0c7653e97",
630
+ "IPY_MODEL_988805506e274daaa19a059f19fb51b8",
631
+ "IPY_MODEL_a0e545db7c0b4b8289e72e53c19fdc3c"
632
+ ],
633
+ "layout": "IPY_MODEL_b75fa1272c794c1cbb66cb39d61a5375"
634
  }
635
  },
636
+ "4d3c75a82de345ad9d01ef5507126023": {
637
  "model_module": "@jupyter-widgets/base",
638
  "model_module_version": "2.0.0",
639
  "model_name": "LayoutModel",
640
  "state": {}
641
  },
642
+ "51a4c221d21544bdb91e98fe6e10dd43": {
 
 
 
 
 
 
 
 
 
 
 
 
643
  "model_module": "@jupyter-widgets/controls",
644
  "model_module_version": "2.0.0",
645
  "model_name": "HTMLStyleModel",
 
649
  "text_color": null
650
  }
651
  },
652
+ "67252eabaa4348d8a3fd4cf0c7653e97": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653
  "model_module": "@jupyter-widgets/controls",
654
  "model_module_version": "2.0.0",
655
  "model_name": "HTMLModel",
656
  "state": {
657
+ "layout": "IPY_MODEL_b624b02837f44ae78ec7ecd29ed0f73b",
658
+ "style": "IPY_MODEL_51a4c221d21544bdb91e98fe6e10dd43",
659
+ "value": "100%"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660
  }
661
  },
662
+ "6deae131201c46af8be20e2129d17176": {
 
 
 
 
 
 
663
  "model_module": "@jupyter-widgets/controls",
664
  "model_module_version": "2.0.0",
665
  "model_name": "HTMLStyleModel",
 
669
  "text_color": null
670
  }
671
  },
672
+ "787e84a3b17d4f8ba132db1a5ed466b3": {
 
 
 
 
 
 
 
 
 
 
 
 
 
673
  "model_module": "@jupyter-widgets/controls",
674
  "model_module_version": "2.0.0",
675
  "model_name": "ProgressStyleModel",
 
677
  "description_width": ""
678
  }
679
  },
680
+ "79037b808e294df393a993227a4ff8c3": {
681
  "model_module": "@jupyter-widgets/controls",
682
  "model_module_version": "2.0.0",
683
  "model_name": "ProgressStyleModel",
 
685
  "description_width": ""
686
  }
687
  },
688
+ "7d3e41a01d7f4a3f997b510ad7be62c7": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689
  "model_module": "@jupyter-widgets/controls",
690
  "model_module_version": "2.0.0",
691
+ "model_name": "HTMLStyleModel",
692
  "state": {
693
+ "description_width": "",
694
+ "font_size": null,
695
+ "text_color": null
 
 
 
696
  }
697
  },
698
+ "805f79a3d7bd493092168b98de443e0b": {
699
  "model_module": "@jupyter-widgets/base",
700
  "model_module_version": "2.0.0",
701
  "model_name": "LayoutModel",
702
  "state": {}
703
  },
704
+ "8383a80b3a504b58a50458f237ecafd8": {
705
  "model_module": "@jupyter-widgets/base",
706
  "model_module_version": "2.0.0",
707
  "model_name": "LayoutModel",
708
  "state": {}
709
  },
710
+ "91aa307807cd4abc909e1a0330674020": {
711
  "model_module": "@jupyter-widgets/base",
712
  "model_module_version": "2.0.0",
713
  "model_name": "LayoutModel",
714
  "state": {}
715
  },
716
+ "988805506e274daaa19a059f19fb51b8": {
 
 
 
 
 
 
 
 
717
  "model_module": "@jupyter-widgets/controls",
718
  "model_module_version": "2.0.0",
719
  "model_name": "FloatProgressModel",
720
  "state": {
721
  "bar_style": "success",
722
+ "layout": "IPY_MODEL_91aa307807cd4abc909e1a0330674020",
723
+ "max": 28,
724
+ "style": "IPY_MODEL_16d09a1085ce4b7c94d3c9838e7b6047",
725
+ "value": 28
726
  }
727
  },
728
+ "9dbfeae19c864b1cb2df6c4b39bfa9c9": {
729
  "model_module": "@jupyter-widgets/controls",
730
  "model_module_version": "2.0.0",
731
+ "model_name": "HTMLModel",
732
  "state": {
733
+ "layout": "IPY_MODEL_805f79a3d7bd493092168b98de443e0b",
734
+ "style": "IPY_MODEL_bb9f29e22202434b9988e1850ac188fc",
735
+ "value": "  0%"
736
  }
737
  },
738
+ "a0e545db7c0b4b8289e72e53c19fdc3c": {
739
  "model_module": "@jupyter-widgets/controls",
740
  "model_module_version": "2.0.0",
741
  "model_name": "HTMLModel",
742
  "state": {
743
+ "layout": "IPY_MODEL_8383a80b3a504b58a50458f237ecafd8",
744
+ "style": "IPY_MODEL_faf0fccdc8044bc69f12c930c57d4e9f",
745
+ "value": " 28/28 [7:25:40&lt;00:00, 2734.24s/it]"
746
  }
747
  },
748
+ "ac2f01b8c798419cbd4daf5c12384219": {
749
  "model_module": "@jupyter-widgets/controls",
750
  "model_module_version": "2.0.0",
751
+ "model_name": "HBoxModel",
752
  "state": {
753
+ "children": [
754
+ "IPY_MODEL_08bb114ae5674fd1af84c459d1407555",
755
+ "IPY_MODEL_45675de1547d489d9f935cb432b4fadf",
756
+ "IPY_MODEL_e4a50abf99f3496f901a8bb16495cc91"
757
+ ],
758
+ "layout": "IPY_MODEL_cd191bca40d541228d4826c3885066d7"
759
  }
760
  },
761
+ "ac7f987a9bcc4c558b6773d573d97134": {
762
+ "model_module": "@jupyter-widgets/base",
763
  "model_module_version": "2.0.0",
764
+ "model_name": "LayoutModel",
765
+ "state": {}
 
 
 
 
766
  },
767
+ "b624b02837f44ae78ec7ecd29ed0f73b": {
768
+ "model_module": "@jupyter-widgets/base",
769
  "model_module_version": "2.0.0",
770
+ "model_name": "LayoutModel",
771
+ "state": {}
772
+ },
773
+ "b75fa1272c794c1cbb66cb39d61a5375": {
774
+ "model_module": "@jupyter-widgets/base",
775
+ "model_module_version": "2.0.0",
776
+ "model_name": "LayoutModel",
777
+ "state": {}
778
  },
779
+ "bb9f29e22202434b9988e1850ac188fc": {
780
  "model_module": "@jupyter-widgets/controls",
781
  "model_module_version": "2.0.0",
782
  "model_name": "HTMLStyleModel",
 
786
  "text_color": null
787
  }
788
  },
789
+ "c98b44b3cdfc4d1180786cf11521d9d3": {
 
 
 
 
 
 
 
 
 
 
 
790
  "model_module": "@jupyter-widgets/base",
791
  "model_module_version": "2.0.0",
792
  "model_name": "LayoutModel",
793
  "state": {}
794
  },
795
+ "cd191bca40d541228d4826c3885066d7": {
 
 
 
 
 
 
 
 
 
 
 
 
 
796
  "model_module": "@jupyter-widgets/base",
797
  "model_module_version": "2.0.0",
798
  "model_name": "LayoutModel",
799
  "state": {}
800
  },
801
+ "cd8b7bf098b84df197fcd498084e5afd": {
802
+ "model_module": "@jupyter-widgets/base",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803
  "model_module_version": "2.0.0",
804
+ "model_name": "LayoutModel",
805
+ "state": {}
 
 
 
 
806
  },
807
+ "e4a50abf99f3496f901a8bb16495cc91": {
808
  "model_module": "@jupyter-widgets/controls",
809
  "model_module_version": "2.0.0",
810
  "model_name": "HTMLModel",
811
  "state": {
812
+ "layout": "IPY_MODEL_ac7f987a9bcc4c558b6773d573d97134",
813
+ "style": "IPY_MODEL_43e1040562d1439b801ecfedf5035aee",
814
+ "value": " 0/29 [00:06&lt;?,?it/s]"
815
  }
816
  },
817
+ "f6e60cbeb3a246a189de60bfddf1ea24": {
818
+ "model_module": "@jupyter-widgets/base",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819
  "model_module_version": "2.0.0",
820
  "model_name": "LayoutModel",
821
  "state": {}
822
  },
823
+ "faf0fccdc8044bc69f12c930c57d4e9f": {
 
 
 
 
 
 
 
 
 
 
824
  "model_module": "@jupyter-widgets/controls",
825
  "model_module_version": "2.0.0",
826
  "model_name": "HTMLStyleModel",
mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2751e284bfa727475023d8317dd19c274900dc7c724bbad85854c27d654b66c7
3
- size 12615
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b866aaf640e4a2ac46d74fe01ced6ceb25c69329569344172884302c004b7e
3
+ size 14107
mlip_arena/tasks/eos/run.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [
8
  {
@@ -11,11 +11,21 @@
11
  "text": [
12
  "No module named 'deepmd'\n"
13
  ]
 
 
 
 
 
 
 
 
 
 
14
  }
15
  ],
16
  "source": [
17
  "import os\n",
18
- "from mp_api.client import MPRester\n",
19
  "from dask.distributed import Client\n",
20
  "from dask_jobqueue import SLURMCluster\n",
21
  "from prefect import task, flow\n",
@@ -34,7 +44,7 @@
34
  "\n",
35
  "load_dotenv()\n",
36
  "\n",
37
- "MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
38
  ]
39
  },
40
  {
@@ -575,7 +585,7 @@
575
  "name": "python",
576
  "nbconvert_exporter": "python",
577
  "pygments_lexer": "ipython3",
578
- "version": "3.11.8"
579
  },
580
  "widgets": {
581
  "application/vnd.jupyter.widget-state+json": {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [
8
  {
 
11
  "text": [
12
  "No module named 'deepmd'\n"
13
  ]
14
+ },
15
+ {
16
+ "data": {
17
+ "text/plain": [
18
+ "True"
19
+ ]
20
+ },
21
+ "execution_count": 2,
22
+ "metadata": {},
23
+ "output_type": "execute_result"
24
  }
25
  ],
26
  "source": [
27
  "import os\n",
28
+ "# from mp_api.client import MPRester\n",
29
  "from dask.distributed import Client\n",
30
  "from dask_jobqueue import SLURMCluster\n",
31
  "from prefect import task, flow\n",
 
44
  "\n",
45
  "load_dotenv()\n",
46
  "\n",
47
+ "# MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
48
  ]
49
  },
50
  {
 
585
  "name": "python",
586
  "nbconvert_exporter": "python",
587
  "pygments_lexer": "ipython3",
588
+ "version": "3.11.10"
589
  },
590
  "widgets": {
591
  "application/vnd.jupyter.widget-state+json": {