Spaces:
Running
Running
add mrore/update diatomics curves
Browse files
mlip_arena/tasks/combustion/water.ipynb
CHANGED
@@ -34,10 +34,11 @@
|
|
34 |
{
|
35 |
"cell_type": "markdown",
|
36 |
"metadata": {
|
|
|
37 |
"tags": []
|
38 |
},
|
39 |
"source": [
|
40 |
-
"
|
41 |
]
|
42 |
},
|
43 |
{
|
@@ -173,7 +174,7 @@
|
|
173 |
"source ~/.bashrc\n",
|
174 |
"module load python\n",
|
175 |
"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
|
176 |
-
"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.
|
177 |
"\n"
|
178 |
]
|
179 |
},
|
@@ -181,9 +182,9 @@
|
|
181 |
"name": "stderr",
|
182 |
"output_type": "stream",
|
183 |
"text": [
|
184 |
-
"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:
|
185 |
"Perhaps you already have a cluster running?\n",
|
186 |
-
"Hosting the HTTP server on port
|
187 |
" warnings.warn(\n"
|
188 |
]
|
189 |
}
|
@@ -283,29 +284,313 @@
|
|
283 |
},
|
284 |
"outputs": [
|
285 |
{
|
286 |
-
"
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
"output_type": "error",
|
289 |
"traceback": [
|
290 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
291 |
-
"\u001b[0;
|
292 |
"Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcombustion\u001b[49m\u001b[43m(\u001b[49m\u001b[43matoms\u001b[49m\u001b[43m)\u001b[49m\n",
|
293 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flows.py:
|
294 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:
|
295 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:
|
296 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/
|
297 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:
|
298 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/
|
299 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:
|
300 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/
|
301 |
-
"
|
302 |
-
"
|
303 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/
|
304 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/
|
305 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/
|
306 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/
|
307 |
-
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/
|
308 |
-
"\u001b[0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
]
|
310 |
}
|
311 |
],
|
@@ -339,7 +624,7 @@
|
|
339 |
"name": "python",
|
340 |
"nbconvert_exporter": "python",
|
341 |
"pygments_lexer": "ipython3",
|
342 |
-
"version": "3.11.
|
343 |
},
|
344 |
"widgets": {
|
345 |
"application/vnd.jupyter.widget-state+json": {
|
|
|
34 |
{
|
35 |
"cell_type": "markdown",
|
36 |
"metadata": {
|
37 |
+
"jp-MarkdownHeadingCollapsed": true,
|
38 |
"tags": []
|
39 |
},
|
40 |
"source": [
|
41 |
+
"## Intial configuration"
|
42 |
]
|
43 |
},
|
44 |
{
|
|
|
174 |
"source ~/.bashrc\n",
|
175 |
"module load python\n",
|
176 |
"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
|
177 |
+
"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.15:38781 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 86400\n",
|
178 |
"\n"
|
179 |
]
|
180 |
},
|
|
|
182 |
"name": "stderr",
|
183 |
"output_type": "stream",
|
184 |
"text": [
|
185 |
+
"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:187: UserWarning: Port 8787 is already in use.\n",
|
186 |
"Perhaps you already have a cluster running?\n",
|
187 |
+
"Hosting the HTTP server on port 44831 instead\n",
|
188 |
" warnings.warn(\n"
|
189 |
]
|
190 |
}
|
|
|
284 |
},
|
285 |
"outputs": [
|
286 |
{
|
287 |
+
"data": {
|
288 |
+
"text/html": [
|
289 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">12:01:53.150 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - Created flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'khaki-hippo'</span> for flow<span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\"> 'combustion'</span>\n",
|
290 |
+
"</pre>\n"
|
291 |
+
],
|
292 |
+
"text/plain": [
|
293 |
+
"12:01:53.150 | \u001b[36mINFO\u001b[0m | prefect.engine - Created flow run\u001b[35m 'khaki-hippo'\u001b[0m for flow\u001b[1;35m 'combustion'\u001b[0m\n"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
"metadata": {},
|
297 |
+
"output_type": "display_data"
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"data": {
|
301 |
+
"text/html": [
|
302 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">12:01:53.156 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - View at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/ce836160-4f0d-49a4-90d8-227225cb8f4c</span>\n",
|
303 |
+
"</pre>\n"
|
304 |
+
],
|
305 |
+
"text/plain": [
|
306 |
+
"12:01:53.156 | \u001b[36mINFO\u001b[0m | prefect.engine - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/ce836160-4f0d-49a4-90d8-227225cb8f4c\u001b[0m\n"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
"metadata": {},
|
310 |
+
"output_type": "display_data"
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"data": {
|
314 |
+
"text/html": [
|
315 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">12:01:53.523 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(99282258, 'tcp://128.55.64.15:38781', workers=0, threads=0, memory=0 B)\n",
|
316 |
+
"</pre>\n"
|
317 |
+
],
|
318 |
+
"text/plain": [
|
319 |
+
"12:01:53.523 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(99282258, 'tcp://128.55.64.15:38781', workers=0, threads=0, memory=0 B)\n"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
"metadata": {},
|
323 |
+
"output_type": "display_data"
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"data": {
|
327 |
+
"text/html": [
|
328 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">13:06:57.332 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'khaki-hippo'</span> - Encountered exception during execution: IndexError('too many indices for tensor of dimension 1')\n",
|
329 |
+
"Traceback (most recent call last):\n",
|
330 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
|
331 |
+
" yield self\n",
|
332 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
|
333 |
+
" engine.call_flow_fn()\n",
|
334 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
|
335 |
+
" result = call_with_parameters(self.flow.fn, self.parameters)\n",
|
336 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
337 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
|
338 |
+
" return fn(*args, **kwargs)\n",
|
339 |
+
" ^^^^^^^^^^^^^^^^^^^\n",
|
340 |
+
" File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in combustion\n",
|
341 |
+
" return [future.result() for future in futures]\n",
|
342 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
343 |
+
" File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in <listcomp>\n",
|
344 |
+
" return [future.result() for future in futures]\n",
|
345 |
+
" ^^^^^^^^^^^^^^^\n",
|
346 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 143, in result\n",
|
347 |
+
" _result = self._final_state.result(\n",
|
348 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
349 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/schemas/objects.py\", line 314, in result\n",
|
350 |
+
" return get_state_result(\n",
|
351 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
352 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 75, in get_state_result\n",
|
353 |
+
" return _get_state_result(\n",
|
354 |
+
" ^^^^^^^^^^^^^^^^^^\n",
|
355 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 399, in coroutine_wrapper\n",
|
356 |
+
" return run_coro_as_sync(ctx_call())\n",
|
357 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
358 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 243, in run_coro_as_sync\n",
|
359 |
+
" return call.result()\n",
|
360 |
+
" ^^^^^^^^^^^^^\n",
|
361 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 312, in result\n",
|
362 |
+
" return self.future.result(timeout=timeout)\n",
|
363 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
364 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 182, in result\n",
|
365 |
+
" return self.__get_result()\n",
|
366 |
+
" ^^^^^^^^^^^^^^^^^^^\n",
|
367 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/concurrent/futures/_base.py\", line 401, in __get_result\n",
|
368 |
+
" raise self._exception\n",
|
369 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 383, in _run_async\n",
|
370 |
+
" result = await coro\n",
|
371 |
+
" ^^^^^^^^^^\n",
|
372 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 225, in coroutine_wrapper\n",
|
373 |
+
" return await task\n",
|
374 |
+
" ^^^^^^^^^^\n",
|
375 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 389, in ctx_call\n",
|
376 |
+
" result = await async_fn(*args, **kwargs)\n",
|
377 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
378 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 138, in _get_state_result\n",
|
379 |
+
" raise await get_state_exception(state)\n",
|
380 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 763, in run_context\n",
|
381 |
+
" yield self\n",
|
382 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 1323, in run_task_sync\n",
|
383 |
+
" engine.call_task_fn(txn)\n",
|
384 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
385 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 786, in call_task_fn\n",
|
386 |
+
" result = call_with_parameters(self.task.fn, parameters)\n",
|
387 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
388 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
|
389 |
+
" return fn(*args, **kwargs)\n",
|
390 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
391 |
+
" File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/tasks/md.py\", line 363, in run\n",
|
392 |
+
" md_runner.run(steps=n_steps)\n",
|
393 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
394 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 277, in run\n",
|
395 |
+
" self.initialize()\n",
|
396 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 399, in initialize\n",
|
397 |
+
" self._calculate_q_past_and_future()\n",
|
398 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
399 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 608, in _calculate_q_past_and_future\n",
|
400 |
+
" self._calculate_q_future(self.atoms.get_forces(md=True))\n",
|
401 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
402 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/atoms.py\", line 812, in get_forces\n",
|
403 |
+
" forces = self._calc.get_forces(self)\n",
|
404 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
405 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/abc.py\", line 30, in get_forces\n",
|
406 |
+
" return self.get_property('forces', atoms)\n",
|
407 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
408 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/calculator.py\", line 538, in get_property\n",
|
409 |
+
" self.calculate(atoms, [name], system_changes)\n",
|
410 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
411 |
+
" File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/models/externals/chgnet.py\", line 36, in calculate\n",
|
412 |
+
" super().calculate(atoms, properties, system_changes)\n",
|
413 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
414 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/dynamics.py\", line 143, in calculate\n",
|
415 |
+
" model_prediction = self.model.predict_graph(\n",
|
416 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
417 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 627, in predict_graph\n",
|
418 |
+
" prediction = self.forward(\n",
|
419 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
420 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 359, in forward\n",
|
421 |
+
" batched_graph = BatchedGraph.from_graphs(\n",
|
422 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
423 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 822, in from_graphs\n",
|
424 |
+
" center=atom_cart_coords[graph.atom_graph[:, 0]],\n",
|
425 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
426 |
+
"IndexError: too many indices for tensor of dimension 1\n",
|
427 |
+
"</pre>\n"
|
428 |
+
],
|
429 |
+
"text/plain": [
|
430 |
+
"13:06:57.332 | \u001b[38;5;160mERROR\u001b[0m | Flow run\u001b[35m 'khaki-hippo'\u001b[0m - Encountered exception during execution: IndexError('too many indices for tensor of dimension 1')\n",
|
431 |
+
"Traceback (most recent call last):\n",
|
432 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
|
433 |
+
" yield self\n",
|
434 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
|
435 |
+
" engine.call_flow_fn()\n",
|
436 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
|
437 |
+
" result = call_with_parameters(self.flow.fn, self.parameters)\n",
|
438 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
439 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
|
440 |
+
" return fn(*args, **kwargs)\n",
|
441 |
+
" ^^^^^^^^^^^^^^^^^^^\n",
|
442 |
+
" File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in combustion\n",
|
443 |
+
" return [future.result() for future in futures]\n",
|
444 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
445 |
+
" File \"/tmp/ipykernel_1849247/2043615938.py\", line 26, in <listcomp>\n",
|
446 |
+
" return [future.result() for future in futures]\n",
|
447 |
+
" ^^^^^^^^^^^^^^^\n",
|
448 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 143, in result\n",
|
449 |
+
" _result = self._final_state.result(\n",
|
450 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
451 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/schemas/objects.py\", line 314, in result\n",
|
452 |
+
" return get_state_result(\n",
|
453 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
454 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 75, in get_state_result\n",
|
455 |
+
" return _get_state_result(\n",
|
456 |
+
" ^^^^^^^^^^^^^^^^^^\n",
|
457 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 399, in coroutine_wrapper\n",
|
458 |
+
" return run_coro_as_sync(ctx_call())\n",
|
459 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
460 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 243, in run_coro_as_sync\n",
|
461 |
+
" return call.result()\n",
|
462 |
+
" ^^^^^^^^^^^^^\n",
|
463 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 312, in result\n",
|
464 |
+
" return self.future.result(timeout=timeout)\n",
|
465 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
466 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 182, in result\n",
|
467 |
+
" return self.__get_result()\n",
|
468 |
+
" ^^^^^^^^^^^^^^^^^^^\n",
|
469 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/concurrent/futures/_base.py\", line 401, in __get_result\n",
|
470 |
+
" raise self._exception\n",
|
471 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py\", line 383, in _run_async\n",
|
472 |
+
" result = await coro\n",
|
473 |
+
" ^^^^^^^^^^\n",
|
474 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 225, in coroutine_wrapper\n",
|
475 |
+
" return await task\n",
|
476 |
+
" ^^^^^^^^^^\n",
|
477 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py\", line 389, in ctx_call\n",
|
478 |
+
" result = await async_fn(*args, **kwargs)\n",
|
479 |
+
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
480 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py\", line 138, in _get_state_result\n",
|
481 |
+
" raise await get_state_exception(state)\n",
|
482 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 763, in run_context\n",
|
483 |
+
" yield self\n",
|
484 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 1323, in run_task_sync\n",
|
485 |
+
" engine.call_task_fn(txn)\n",
|
486 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
487 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py\", line 786, in call_task_fn\n",
|
488 |
+
" result = call_with_parameters(self.task.fn, parameters)\n",
|
489 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
490 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
|
491 |
+
" return fn(*args, **kwargs)\n",
|
492 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
493 |
+
" File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/tasks/md.py\", line 363, in run\n",
|
494 |
+
" md_runner.run(steps=n_steps)\n",
|
495 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
496 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 277, in run\n",
|
497 |
+
" self.initialize()\n",
|
498 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 399, in initialize\n",
|
499 |
+
" self._calculate_q_past_and_future()\n",
|
500 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
501 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py\", line 608, in _calculate_q_past_and_future\n",
|
502 |
+
" self._calculate_q_future(self.atoms.get_forces(md=True))\n",
|
503 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
504 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/atoms.py\", line 812, in get_forces\n",
|
505 |
+
" forces = self._calc.get_forces(self)\n",
|
506 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
507 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/abc.py\", line 30, in get_forces\n",
|
508 |
+
" return self.get_property('forces', atoms)\n",
|
509 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
510 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/calculator.py\", line 538, in get_property\n",
|
511 |
+
" self.calculate(atoms, [name], system_changes)\n",
|
512 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
513 |
+
" File \"/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/models/externals/chgnet.py\", line 36, in calculate\n",
|
514 |
+
" super().calculate(atoms, properties, system_changes)\n",
|
515 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
516 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/dynamics.py\", line 143, in calculate\n",
|
517 |
+
" model_prediction = self.model.predict_graph(\n",
|
518 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
519 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 627, in predict_graph\n",
|
520 |
+
" prediction = self.forward(\n",
|
521 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
522 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 359, in forward\n",
|
523 |
+
" batched_graph = BatchedGraph.from_graphs(\n",
|
524 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
525 |
+
" File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py\", line 822, in from_graphs\n",
|
526 |
+
" center=atom_cart_coords[graph.atom_graph[:, 0]],\n",
|
527 |
+
" ^^^^^^^^^^^^^^^^^\n",
|
528 |
+
"IndexError: too many indices for tensor of dimension 1\n"
|
529 |
+
]
|
530 |
+
},
|
531 |
+
"metadata": {},
|
532 |
+
"output_type": "display_data"
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"data": {
|
536 |
+
"text/html": [
|
537 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">13:06:58.009 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'khaki-hippo'</span> - Finished in state <span style=\"color: #d70000; text-decoration-color: #d70000\">Failed</span>('Flow run encountered an exception: IndexError: too many indices for tensor of dimension 1')\n",
|
538 |
+
"</pre>\n"
|
539 |
+
],
|
540 |
+
"text/plain": [
|
541 |
+
"13:06:58.009 | \u001b[38;5;160mERROR\u001b[0m | Flow run\u001b[35m 'khaki-hippo'\u001b[0m - Finished in state \u001b[38;5;160mFailed\u001b[0m('Flow run encountered an exception: IndexError: too many indices for tensor of dimension 1')\n"
|
542 |
+
]
|
543 |
+
},
|
544 |
+
"metadata": {},
|
545 |
+
"output_type": "display_data"
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"ename": "IndexError",
|
549 |
+
"evalue": "too many indices for tensor of dimension 1",
|
550 |
"output_type": "error",
|
551 |
"traceback": [
|
552 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
553 |
+
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
554 |
"Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcombustion\u001b[49m\u001b[43m(\u001b[49m\u001b[43matoms\u001b[49m\u001b[43m)\u001b[49m\n",
|
555 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flows.py:1345\u001b[0m, in \u001b[0;36mFlow.__call__\u001b[0;34m(self, return_state, wait_for, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1341\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m track_viz_task(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39misasync, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, parameters)\n\u001b[1;32m 1343\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mflow_engine\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m run_flow\n\u001b[0;32m-> 1345\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1346\u001b[0m \u001b[43m \u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1347\u001b[0m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1348\u001b[0m \u001b[43m \u001b[49m\u001b[43mwait_for\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwait_for\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1349\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1350\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
556 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:818\u001b[0m, in \u001b[0;36mrun_flow\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m run_flow_async(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 817\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 818\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
557 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:698\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 695\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[1;32m 696\u001b[0m engine\u001b[38;5;241m.\u001b[39mcall_flow_fn()\n\u001b[0;32m--> 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
558 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:255\u001b[0m, in \u001b[0;36mFlowRunEngine.result\u001b[0;34m(self, raise_on_failure)\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m NotSet:\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raise_on_failure:\n\u001b[0;32m--> 255\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m 258\u001b[0m \u001b[38;5;66;03m# This is a fall through case which leans on the existing state result mechanics to get the\u001b[39;00m\n\u001b[1;32m 259\u001b[0m \u001b[38;5;66;03m# return value. This is necessary because we currently will return a State object if the\u001b[39;00m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;66;03m# the State was Prefect-created.\u001b[39;00m\n\u001b[1;32m 261\u001b[0m \u001b[38;5;66;03m# TODO: Remove the need to get the result from a State except in cases where the return value\u001b[39;00m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;66;03m# is a State object.\u001b[39;00m\n",
|
559 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:652\u001b[0m, in \u001b[0;36mFlowRunEngine.run_context\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 645\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m timeout_context(\n\u001b[1;32m 646\u001b[0m seconds\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mtimeout_seconds,\n\u001b[1;32m 647\u001b[0m timeout_exc_type\u001b[38;5;241m=\u001b[39mFlowRunTimeoutError,\n\u001b[1;32m 648\u001b[0m ):\n\u001b[1;32m 649\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogger\u001b[38;5;241m.\u001b[39mdebug(\n\u001b[1;32m 650\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExecuting flow \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m for flow run \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m...\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 651\u001b[0m )\n\u001b[0;32m--> 652\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n\u001b[1;32m 653\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 654\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_timeout(exc)\n",
|
560 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:696\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mis_running():\n\u001b[1;32m 695\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[0;32m--> 696\u001b[0m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flow_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mresult()\n",
|
561 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:675\u001b[0m, in \u001b[0;36mFlowRunEngine.call_flow_fn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _call_flow_fn()\n\u001b[1;32m 674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 675\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mcall_with_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 676\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_success(result)\n",
|
562 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py:206\u001b[0m, in \u001b[0;36mcall_with_parameters\u001b[0;34m(fn, parameters)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03mCall a function with parameters extracted with `get_call_parameters`\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03mthe args/kwargs using `parameters_to_positional_and_keyword` directly\u001b[39;00m\n\u001b[1;32m 204\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 205\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m parameters_to_args_kwargs(fn, parameters)\n\u001b[0;32m--> 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
563 |
+
"Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36mcombustion\u001b[0;34m(atoms)\u001b[0m\n\u001b[1;32m 6\u001b[0m future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m 7\u001b[0m atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m 8\u001b[0m calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 21\u001b[0m restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 24\u001b[0m futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m[\u001b[49m\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfuture\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m]\u001b[49m\n",
|
564 |
+
"Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 6\u001b[0m future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m 7\u001b[0m atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m 8\u001b[0m calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 21\u001b[0m restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 24\u001b[0m futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m future \u001b[38;5;129;01min\u001b[39;00m futures]\n",
|
565 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py:143\u001b[0m, in \u001b[0;36mPrefectDaskFuture.result\u001b[0;34m(self, timeout, raise_on_failure)\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m future_result\n\u001b[0;32m--> 143\u001b[0m _result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_final_state\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 144\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_on_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_on_failure\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfetch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 145\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;66;03m# state.result is a `sync_compatible` function that may or may not return an awaitable\u001b[39;00m\n\u001b[1;32m 147\u001b[0m \u001b[38;5;66;03m# depending on whether the parent frame is sync or not\u001b[39;00m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m asyncio\u001b[38;5;241m.\u001b[39miscoroutine(_result):\n",
|
566 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/client/schemas/objects.py:314\u001b[0m, in \u001b[0;36mState.result\u001b[0;34m(self, raise_on_failure, fetch, retry_result_failure)\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 230\u001b[0m \u001b[38;5;124;03mRetrieve the result attached to this state.\u001b[39;00m\n\u001b[1;32m 231\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 310\u001b[0m \u001b[38;5;124;03m >>> await flow_run.state.result(raise_on_failure=True, fetch=True) # Raises `ValueError(\"oh no!\")`\u001b[39;00m\n\u001b[1;32m 311\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mstates\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_state_result\n\u001b[0;32m--> 314\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_state_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_on_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_on_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43mfetch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfetch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43mretry_result_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_result_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 319\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
567 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py:75\u001b[0m, in \u001b[0;36mget_state_result\u001b[0;34m(state, raise_on_failure, fetch, retry_result_failure)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m state\u001b[38;5;241m.\u001b[39mdata\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 75\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_state_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 76\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_on_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_on_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 78\u001b[0m \u001b[43m \u001b[49m\u001b[43mretry_result_failure\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_result_failure\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 79\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
568 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:399\u001b[0m, in \u001b[0;36msync_compatible.<locals>.coroutine_wrapper\u001b[0;34m(_sync, *args, **kwargs)\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ctx_call()\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 399\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_coro_as_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
|
569 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:243\u001b[0m, in \u001b[0;36mrun_coro_as_sync\u001b[0;34m(coroutine, force_new_thread, wait_for_result)\u001b[0m\n\u001b[1;32m 241\u001b[0m runner\u001b[38;5;241m.\u001b[39msubmit(call)\n\u001b[1;32m 242\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 243\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m:\n\u001b[1;32m 245\u001b[0m call\u001b[38;5;241m.\u001b[39mcancel()\n",
|
570 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py:312\u001b[0m, in \u001b[0;36mCall.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 306\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mresult\u001b[39m(\u001b[38;5;28mself\u001b[39m, timeout: Optional[\u001b[38;5;28mfloat\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 307\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 308\u001b[0m \u001b[38;5;124;03m Wait for the result of the call.\u001b[39;00m\n\u001b[1;32m 309\u001b[0m \n\u001b[1;32m 310\u001b[0m \u001b[38;5;124;03m Not safe for use from asynchronous contexts.\u001b[39;00m\n\u001b[1;32m 311\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 312\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n",
|
571 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py:182\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[1;32m 181\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;241m==\u001b[39m FINISHED:\n\u001b[0;32m--> 182\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 183\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 184\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m()\n",
|
572 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/concurrent/futures/_base.py:401\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception:\n\u001b[1;32m 400\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 401\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 403\u001b[0m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
573 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/_internal/concurrency/calls.py:383\u001b[0m, in \u001b[0;36mCall._run_async\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfuture\u001b[38;5;241m.\u001b[39menforce_async_deadline() \u001b[38;5;28;01mas\u001b[39;00m cancel_scope:\n\u001b[1;32m 382\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 383\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m coro\n\u001b[1;32m 384\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 385\u001b[0m \u001b[38;5;66;03m# Forget this call's arguments in order to free up any memory\u001b[39;00m\n\u001b[1;32m 386\u001b[0m \u001b[38;5;66;03m# that may be referenced by them; after a call has happened,\u001b[39;00m\n\u001b[1;32m 387\u001b[0m \u001b[38;5;66;03m# there's no need to keep a reference to them\u001b[39;00m\n\u001b[1;32m 388\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
574 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:225\u001b[0m, in \u001b[0;36mrun_coro_as_sync.<locals>.coroutine_wrapper\u001b[0;34m()\u001b[0m\n\u001b[1;32m 223\u001b[0m task \u001b[38;5;241m=\u001b[39m create_task(coroutine)\n\u001b[1;32m 224\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m wait_for_result:\n\u001b[0;32m--> 225\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m task\n\u001b[1;32m 226\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 227\u001b[0m RUNNING_IN_RUN_SYNC_LOOP_FLAG\u001b[38;5;241m.\u001b[39mreset(token1)\n",
|
575 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/asyncutils.py:389\u001b[0m, in \u001b[0;36msync_compatible.<locals>.coroutine_wrapper.<locals>.ctx_call\u001b[0;34m()\u001b[0m\n\u001b[1;32m 387\u001b[0m token \u001b[38;5;241m=\u001b[39m RUNNING_ASYNC_FLAG\u001b[38;5;241m.\u001b[39mset(\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 388\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 389\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m async_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 390\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 391\u001b[0m RUNNING_ASYNC_FLAG\u001b[38;5;241m.\u001b[39mreset(token)\n",
|
576 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/states.py:138\u001b[0m, in \u001b[0;36m_get_state_result\u001b[0;34m(state, raise_on_failure, retry_result_failure)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnfinishedRun(\n\u001b[1;32m 132\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRun is in \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mstate\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m state, its result is not available.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 133\u001b[0m )\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raise_on_failure \u001b[38;5;129;01mand\u001b[39;00m (\n\u001b[1;32m 136\u001b[0m state\u001b[38;5;241m.\u001b[39mis_crashed() \u001b[38;5;129;01mor\u001b[39;00m state\u001b[38;5;241m.\u001b[39mis_failed() \u001b[38;5;129;01mor\u001b[39;00m state\u001b[38;5;241m.\u001b[39mis_cancelled()\n\u001b[1;32m 137\u001b[0m ):\n\u001b[0;32m--> 138\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28;01mawait\u001b[39;00m get_state_exception(state)\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(state\u001b[38;5;241m.\u001b[39mdata, (BaseResult, ResultRecordMetadata)):\n\u001b[1;32m 141\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mawait\u001b[39;00m _get_state_result_data_with_retries(\n\u001b[1;32m 142\u001b[0m state, retry_result_failure\u001b[38;5;241m=\u001b[39mretry_result_failure\n\u001b[1;32m 143\u001b[0m )\n",
|
577 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py:763\u001b[0m, in \u001b[0;36mrun_context\u001b[0;34m()\u001b[0m\n\u001b[1;32m 760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_cancelled():\n\u001b[1;32m 761\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTask run cancelled by the task runner\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 763\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n\u001b[1;32m 764\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 765\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_timeout(exc)\n",
|
578 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py:1323\u001b[0m, in \u001b[0;36mrun_task_sync\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1321\u001b[0m run_coro_as_sync(engine\u001b[38;5;241m.\u001b[39mwait_until_ready())\n\u001b[1;32m 1322\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context(), engine\u001b[38;5;241m.\u001b[39mtransaction_context() \u001b[38;5;28;01mas\u001b[39;00m txn:\n\u001b[0;32m-> 1323\u001b[0m engine\u001b[38;5;241m.\u001b[39mcall_task_fn(txn)\n\u001b[1;32m 1325\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mresult()\n",
|
579 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/task_engine.py:786\u001b[0m, in \u001b[0;36mcall_task_fn\u001b[0;34m()\u001b[0m\n\u001b[1;32m 784\u001b[0m result \u001b[38;5;241m=\u001b[39m call_with_parameters(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtask\u001b[38;5;241m.\u001b[39mfn, parameters)\n\u001b[1;32m 785\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 786\u001b[0m result \u001b[38;5;241m=\u001b[39m call_with_parameters(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtask\u001b[38;5;241m.\u001b[39mfn, parameters)\n\u001b[1;32m 787\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_success(result, transaction\u001b[38;5;241m=\u001b[39mtransaction)\n\u001b[1;32m 788\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
|
580 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py:206\u001b[0m, in \u001b[0;36mcall_with_parameters\u001b[0;34m()\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03mCall a function with parameters extracted with `get_call_parameters`\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03mthe args/kwargs using `parameters_to_positional_and_keyword` directly\u001b[39;00m\n\u001b[1;32m 204\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 205\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m parameters_to_args_kwargs(fn, parameters)\n\u001b[0;32m--> 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
|
581 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/tasks/md.py:363\u001b[0m, in \u001b[0;36mrun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 360\u001b[0m md_runner\u001b[38;5;241m.\u001b[39mattach(_callback, interval\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 362\u001b[0m start_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[0;32m--> 363\u001b[0m md_runner\u001b[38;5;241m.\u001b[39mrun(steps\u001b[38;5;241m=\u001b[39mn_steps)\n\u001b[1;32m 364\u001b[0m end_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[1;32m 366\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m traj_file \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
|
582 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py:277\u001b[0m, in \u001b[0;36mrun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Perform a number of time steps.\"\"\"\u001b[39;00m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minitialized:\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minitialize()\n\u001b[1;32m 278\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 279\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhave_the_atoms_been_changed():\n",
|
583 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py:399\u001b[0m, in \u001b[0;36minitialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 396\u001b[0m deltazeta \u001b[38;5;241m=\u001b[39m dt \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtfact \u001b[38;5;241m*\u001b[39m (atoms\u001b[38;5;241m.\u001b[39mget_kinetic_energy() \u001b[38;5;241m-\u001b[39m\n\u001b[1;32m 397\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdesiredEkin)\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mzeta_past \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mzeta \u001b[38;5;241m-\u001b[39m deltazeta\n\u001b[0;32m--> 399\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calculate_q_past_and_future()\n\u001b[1;32m 400\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minitialized \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
|
584 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/md/npt.py:608\u001b[0m, in \u001b[0;36m_calculate_q_past_and_future\u001b[0;34m()\u001b[0m\n\u001b[1;32m 606\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m2\u001b[39m):\n\u001b[1;32m 607\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq_past \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq \u001b[38;5;241m-\u001b[39m dt \u001b[38;5;241m*\u001b[39m np\u001b[38;5;241m.\u001b[39mdot(p \u001b[38;5;241m/\u001b[39m m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minv_h)\n\u001b[0;32m--> 608\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calculate_q_future(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39matoms\u001b[38;5;241m.\u001b[39mget_forces(md\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m))\n\u001b[1;32m 609\u001b[0m p \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mdot(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq_future \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mq_past, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mh \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m dt)) \u001b[38;5;241m*\u001b[39m m\n\u001b[1;32m 610\u001b[0m e \u001b[38;5;241m=\u001b[39m ekin(p)\n",
|
585 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/atoms.py:812\u001b[0m, in \u001b[0;36mget_forces\u001b[0;34m()\u001b[0m\n\u001b[1;32m 810\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAtoms object has no calculator.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 812\u001b[0m forces \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_calc\u001b[38;5;241m.\u001b[39mget_forces(\u001b[38;5;28mself\u001b[39m)\n\u001b[1;32m 814\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m apply_constraint:\n\u001b[1;32m 815\u001b[0m \u001b[38;5;66;03m# We need a special md flag here because for MD we want\u001b[39;00m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;66;03m# to skip real constraints but include special \"constraints\"\u001b[39;00m\n\u001b[1;32m 817\u001b[0m \u001b[38;5;66;03m# Like Hookean.\u001b[39;00m\n\u001b[1;32m 818\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m constraint \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconstraints:\n",
|
586 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/abc.py:30\u001b[0m, in \u001b[0;36mget_forces\u001b[0;34m()\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_forces\u001b[39m(\u001b[38;5;28mself\u001b[39m, atoms\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m---> 30\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_property(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mforces\u001b[39m\u001b[38;5;124m'\u001b[39m, atoms)\n",
|
587 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/ase/calculators/calculator.py:538\u001b[0m, in \u001b[0;36mget_property\u001b[0;34m()\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39muse_cache:\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39matoms \u001b[38;5;241m=\u001b[39m atoms\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[0;32m--> 538\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcalculate(atoms, [name], system_changes)\n\u001b[1;32m 540\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresults:\n\u001b[1;32m 541\u001b[0m \u001b[38;5;66;03m# For some reason the calculator was not able to do what we want,\u001b[39;00m\n\u001b[1;32m 542\u001b[0m \u001b[38;5;66;03m# and that is OK.\u001b[39;00m\n\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m PropertyNotImplementedError(\n\u001b[1;32m 544\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m not present in this \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcalculation\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(name)\n\u001b[1;32m 545\u001b[0m )\n",
|
588 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/mlip-arena/mlip_arena/models/externals/chgnet.py:36\u001b[0m, in \u001b[0;36mcalculate\u001b[0;34m()\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcalculate\u001b[39m(\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 32\u001b[0m atoms: Atoms \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 33\u001b[0m properties: \u001b[38;5;28mlist\u001b[39m \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 34\u001b[0m system_changes: \u001b[38;5;28mlist\u001b[39m \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 35\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 36\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mcalculate(atoms, properties, system_changes)\n\u001b[1;32m 38\u001b[0m \u001b[38;5;66;03m# for ase.io.write compatibility\u001b[39;00m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresults\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrystal_fea\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n",
|
589 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/dynamics.py:143\u001b[0m, in \u001b[0;36mcalculate\u001b[0;34m()\u001b[0m\n\u001b[1;32m 141\u001b[0m structure \u001b[38;5;241m=\u001b[39m AseAtomsAdaptor\u001b[38;5;241m.\u001b[39mget_structure(atoms)\n\u001b[1;32m 142\u001b[0m graph \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mgraph_converter(structure)\n\u001b[0;32m--> 143\u001b[0m model_prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mpredict_graph(\n\u001b[1;32m 144\u001b[0m graph\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice), task\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mefsm\u001b[39m\u001b[38;5;124m\"\u001b[39m, return_crystal_feas\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 145\u001b[0m )\n\u001b[1;32m 147\u001b[0m \u001b[38;5;66;03m# Convert Result\u001b[39;00m\n\u001b[1;32m 148\u001b[0m factor \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mis_intensive \u001b[38;5;28;01melse\u001b[39;00m structure\u001b[38;5;241m.\u001b[39mcomposition\u001b[38;5;241m.\u001b[39mnum_atoms\n",
|
590 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py:627\u001b[0m, in \u001b[0;36mpredict_graph\u001b[0;34m()\u001b[0m\n\u001b[1;32m 625\u001b[0m n_steps \u001b[38;5;241m=\u001b[39m math\u001b[38;5;241m.\u001b[39mceil(\u001b[38;5;28mlen\u001b[39m(graphs) \u001b[38;5;241m/\u001b[39m batch_size)\n\u001b[1;32m 626\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(n_steps):\n\u001b[0;32m--> 627\u001b[0m prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mforward(\n\u001b[1;32m 628\u001b[0m [\n\u001b[1;32m 629\u001b[0m g\u001b[38;5;241m.\u001b[39mto(model_device)\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m g \u001b[38;5;129;01min\u001b[39;00m graphs[batch_size \u001b[38;5;241m*\u001b[39m step : batch_size \u001b[38;5;241m*\u001b[39m (step \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m)]\n\u001b[1;32m 631\u001b[0m ],\n\u001b[1;32m 632\u001b[0m task\u001b[38;5;241m=\u001b[39mtask,\n\u001b[1;32m 633\u001b[0m return_site_energies\u001b[38;5;241m=\u001b[39mreturn_site_energies,\n\u001b[1;32m 634\u001b[0m return_atom_feas\u001b[38;5;241m=\u001b[39mreturn_atom_feas,\n\u001b[1;32m 635\u001b[0m return_crystal_feas\u001b[38;5;241m=\u001b[39mreturn_crystal_feas,\n\u001b[1;32m 636\u001b[0m )\n\u001b[1;32m 637\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m {\n\u001b[1;32m 638\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124me\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 639\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 644\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrystal_fea\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 645\u001b[0m } \u001b[38;5;241m&\u001b[39m {\u001b[38;5;241m*\u001b[39mprediction}:\n\u001b[1;32m 646\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx, tensor \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(prediction[key]):\n",
|
591 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py:359\u001b[0m, in \u001b[0;36mforward\u001b[0;34m()\u001b[0m\n\u001b[1;32m 354\u001b[0m comp_energy \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 355\u001b[0m \u001b[38;5;241m0\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcomposition_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcomposition_model(graphs)\n\u001b[1;32m 356\u001b[0m )\n\u001b[1;32m 358\u001b[0m \u001b[38;5;66;03m# Make batched graph\u001b[39;00m\n\u001b[0;32m--> 359\u001b[0m batched_graph \u001b[38;5;241m=\u001b[39m BatchedGraph\u001b[38;5;241m.\u001b[39mfrom_graphs(\n\u001b[1;32m 360\u001b[0m graphs,\n\u001b[1;32m 361\u001b[0m bond_basis_expansion\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbond_basis_expansion,\n\u001b[1;32m 362\u001b[0m angle_basis_expansion\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mangle_basis_expansion,\n\u001b[1;32m 363\u001b[0m compute_stress\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124ms\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m task,\n\u001b[1;32m 364\u001b[0m )\n\u001b[1;32m 366\u001b[0m \u001b[38;5;66;03m# Pass to model\u001b[39;00m\n\u001b[1;32m 367\u001b[0m prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compute(\n\u001b[1;32m 368\u001b[0m batched_graph,\n\u001b[1;32m 369\u001b[0m compute_force\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m task,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 374\u001b[0m return_crystal_feas\u001b[38;5;241m=\u001b[39mreturn_crystal_feas,\n\u001b[1;32m 375\u001b[0m )\n",
|
592 |
+
"File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/chgnet/model/model.py:822\u001b[0m, in \u001b[0;36mfrom_graphs\u001b[0;34m()\u001b[0m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;66;03m# Bonds\u001b[39;00m\n\u001b[1;32m 820\u001b[0m atom_cart_coords \u001b[38;5;241m=\u001b[39m graph\u001b[38;5;241m.\u001b[39matom_frac_coord \u001b[38;5;241m@\u001b[39m lattice\n\u001b[1;32m 821\u001b[0m bond_basis_ag, bond_basis_bg, bond_vectors \u001b[38;5;241m=\u001b[39m bond_basis_expansion(\n\u001b[0;32m--> 822\u001b[0m center\u001b[38;5;241m=\u001b[39matom_cart_coords[graph\u001b[38;5;241m.\u001b[39matom_graph[:, \u001b[38;5;241m0\u001b[39m]],\n\u001b[1;32m 823\u001b[0m neighbor\u001b[38;5;241m=\u001b[39matom_cart_coords[graph\u001b[38;5;241m.\u001b[39matom_graph[:, \u001b[38;5;241m1\u001b[39m]],\n\u001b[1;32m 824\u001b[0m undirected2directed\u001b[38;5;241m=\u001b[39mgraph\u001b[38;5;241m.\u001b[39mundirected2directed,\n\u001b[1;32m 825\u001b[0m image\u001b[38;5;241m=\u001b[39mgraph\u001b[38;5;241m.\u001b[39mneighbor_image,\n\u001b[1;32m 826\u001b[0m lattice\u001b[38;5;241m=\u001b[39mlattice,\n\u001b[1;32m 827\u001b[0m )\n\u001b[1;32m 828\u001b[0m atom_positions\u001b[38;5;241m.\u001b[39mappend(atom_cart_coords)\n\u001b[1;32m 829\u001b[0m bond_bases_ag\u001b[38;5;241m.\u001b[39mappend(bond_basis_ag)\n",
|
593 |
+
"\u001b[0;31mIndexError\u001b[0m: too many indices for tensor of dimension 1"
|
594 |
]
|
595 |
}
|
596 |
],
|
|
|
624 |
"name": "python",
|
625 |
"nbconvert_exporter": "python",
|
626 |
"pygments_lexer": "ipython3",
|
627 |
+
"version": "3.11.10"
|
628 |
},
|
629 |
"widgets": {
|
630 |
"application/vnd.jupyter.widget-state+json": {
|
mlip_arena/tasks/diatomics/gpaw/run.ipynb
CHANGED
@@ -38,7 +38,7 @@
|
|
38 |
{
|
39 |
"data": {
|
40 |
"application/vnd.jupyter.widget-view+json": {
|
41 |
-
"model_id": "
|
42 |
"version_major": 2,
|
43 |
"version_minor": 0
|
44 |
},
|
@@ -59,7 +59,7 @@
|
|
59 |
{
|
60 |
"data": {
|
61 |
"application/vnd.jupyter.widget-view+json": {
|
62 |
-
"model_id": "
|
63 |
"version_major": 2,
|
64 |
"version_minor": 0
|
65 |
},
|
@@ -80,7 +80,7 @@
|
|
80 |
{
|
81 |
"data": {
|
82 |
"application/vnd.jupyter.widget-view+json": {
|
83 |
-
"model_id": "
|
84 |
"version_major": 2,
|
85 |
"version_minor": 0
|
86 |
},
|
@@ -95,13 +95,13 @@
|
|
95 |
"name": "stdout",
|
96 |
"output_type": "stream",
|
97 |
"text": [
|
98 |
-
"Atoms(symbols='N2', pbc=True, cell=[15.0, 15.001, 15.002]
|
99 |
]
|
100 |
},
|
101 |
{
|
102 |
"data": {
|
103 |
"application/vnd.jupyter.widget-view+json": {
|
104 |
-
"model_id": "
|
105 |
"version_major": 2,
|
106 |
"version_minor": 0
|
107 |
},
|
@@ -116,13 +116,13 @@
|
|
116 |
"name": "stdout",
|
117 |
"output_type": "stream",
|
118 |
"text": [
|
119 |
-
"Atoms(symbols='O2', pbc=True, cell=[15.0, 15.001, 15.002]
|
120 |
]
|
121 |
},
|
122 |
{
|
123 |
"data": {
|
124 |
"application/vnd.jupyter.widget-view+json": {
|
125 |
-
"model_id": "
|
126 |
"version_major": 2,
|
127 |
"version_minor": 0
|
128 |
},
|
@@ -143,7 +143,7 @@
|
|
143 |
{
|
144 |
"data": {
|
145 |
"application/vnd.jupyter.widget-view+json": {
|
146 |
-
"model_id": "
|
147 |
"version_major": 2,
|
148 |
"version_minor": 0
|
149 |
},
|
@@ -164,7 +164,7 @@
|
|
164 |
{
|
165 |
"data": {
|
166 |
"application/vnd.jupyter.widget-view+json": {
|
167 |
-
"model_id": "
|
168 |
"version_major": 2,
|
169 |
"version_minor": 0
|
170 |
},
|
@@ -185,7 +185,7 @@
|
|
185 |
{
|
186 |
"data": {
|
187 |
"application/vnd.jupyter.widget-view+json": {
|
188 |
-
"model_id": "
|
189 |
"version_major": 2,
|
190 |
"version_minor": 0
|
191 |
},
|
@@ -200,13 +200,13 @@
|
|
200 |
"name": "stdout",
|
201 |
"output_type": "stream",
|
202 |
"text": [
|
203 |
-
"Atoms(symbols='Na2', pbc=True, cell=[15.5, 15.501, 15.502]
|
204 |
]
|
205 |
},
|
206 |
{
|
207 |
"data": {
|
208 |
"application/vnd.jupyter.widget-view+json": {
|
209 |
-
"model_id": "
|
210 |
"version_major": 2,
|
211 |
"version_minor": 0
|
212 |
},
|
@@ -221,13 +221,14 @@
|
|
221 |
"name": "stdout",
|
222 |
"output_type": "stream",
|
223 |
"text": [
|
|
|
224 |
"Atoms(symbols='Cr2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
|
225 |
]
|
226 |
},
|
227 |
{
|
228 |
"data": {
|
229 |
"application/vnd.jupyter.widget-view+json": {
|
230 |
-
"model_id": "
|
231 |
"version_major": 2,
|
232 |
"version_minor": 0
|
233 |
},
|
@@ -321,7 +322,7 @@
|
|
321 |
" restart_fpath = out_dir / 'restart.gpw'\n",
|
322 |
"\n",
|
323 |
" calc = GPAW(\n",
|
324 |
-
" mode=PW(
|
325 |
" xc='PBE',\n",
|
326 |
" spinpol=True,\n",
|
327 |
" # basis='dzp'\n",
|
@@ -330,12 +331,8 @@
|
|
330 |
" # nbands=0 if element.is_noble_gas else '110%',\n",
|
331 |
" hund=False,\n",
|
332 |
" mixer=MixerDif(0.01, 1, 1) if element.is_transition_metal else MixerDif(0.25, 3, 10),\n",
|
333 |
-
<<<<<<< Updated upstream
|
334 |
-
" eigensolver='rmm-diis', #Davidson(3), # This solver can parallelize over bands Davidson(3), #\n",
|
335 |
-
=======
|
336 |
" # eigensolver='rmm-diis', #Davidson(3), # This solver can parallelize over bands Davidson(3), #\n",
|
337 |
-
|
338 |
-
" occupations=FermiDirac(0.03, fixmagmom=False), # if not element.is_metal else FermiDirac(0.2, fixmagmom=False),\n",
|
339 |
" # eigensolver=LCAOETDM(),\n",
|
340 |
" # # searchdir_algo={'name': 'l-bfgs-p', 'memory': 10}),\n",
|
341 |
" # occupations={'name': 'fixed-uniform'},\n",
|
@@ -349,17 +346,12 @@
|
|
349 |
" 'energy': 5e-4,\n",
|
350 |
" # 'bands': 4\n",
|
351 |
" },\n",
|
352 |
-
" parallel={'gpu': True}\n",
|
353 |
" # {'energy': 0.0005, # eV / electron\n",
|
354 |
" # 'density': 1.0e-4, # electrons / electron\n",
|
355 |
" # 'eigenstates': 4.0e-8, # eV^2 / electron\n",
|
356 |
" # 'bands': 'occupied'},\n",
|
357 |
-
<<<<<<< Updated upstream
|
358 |
-
" \n",
|
359 |
-
=======
|
360 |
" # parallel={'gpu': True},\n",
|
361 |
" setups='paw' \n",
|
362 |
-
>>>>>>> Stashed changes
|
363 |
" )\n",
|
364 |
" # calc = GPAW(\n",
|
365 |
" # mode='pw', #PW(1500),\n",
|
@@ -424,17 +416,17 @@
|
|
424 |
"\n",
|
425 |
" if fm_energy <= afm_energy:\n",
|
426 |
" magmoms = fm_magmoms\n",
|
427 |
-
"
|
428 |
" # shutil.move(out_dir / \"WAVECAR_FM\", out_dir / \"WAVECAR\") \n",
|
429 |
" else:\n",
|
430 |
" magmoms = afm_magmoms\n",
|
431 |
-
"
|
432 |
" # shutil.move(out_dir / \"WAVECAR_AFM\", out_dir / \"WAVECAR\")\n",
|
433 |
"\n",
|
434 |
-
"
|
435 |
-
"
|
436 |
"\n",
|
437 |
-
"
|
438 |
" # m = min(abs(magmoms[0])*1.2, m)\n",
|
439 |
" # magmoms = magmoms*m/np.abs(magmoms)\n",
|
440 |
"\n",
|
@@ -451,20 +443,12 @@
|
|
451 |
},
|
452 |
{
|
453 |
"cell_type": "code",
|
454 |
-
"execution_count":
|
455 |
"id": "06118461-8db9-49f0-8aae-2150146ab9b5",
|
456 |
"metadata": {
|
457 |
"tags": []
|
458 |
},
|
459 |
-
"outputs": [
|
460 |
-
{
|
461 |
-
"name": "stdout",
|
462 |
-
"output_type": "stream",
|
463 |
-
"text": [
|
464 |
-
"\n"
|
465 |
-
]
|
466 |
-
}
|
467 |
-
],
|
468 |
"source": [
|
469 |
"!echo $GPAW_NEW"
|
470 |
]
|
@@ -558,163 +542,104 @@
|
|
558 |
"widgets": {
|
559 |
"application/vnd.jupyter.widget-state+json": {
|
560 |
"state": {
|
561 |
-
"
|
562 |
"model_module": "@jupyter-widgets/controls",
|
563 |
"model_module_version": "2.0.0",
|
564 |
-
"model_name": "
|
565 |
"state": {
|
566 |
-
"
|
567 |
-
"
|
568 |
-
"
|
569 |
-
"style": "IPY_MODEL_e09a0c50b3bb4e2ebaba70054dcbbedb",
|
570 |
-
"value": 22
|
571 |
}
|
572 |
},
|
573 |
-
"
|
574 |
"model_module": "@jupyter-widgets/controls",
|
575 |
"model_module_version": "2.0.0",
|
576 |
-
"model_name": "
|
577 |
"state": {
|
578 |
-
"
|
579 |
-
"layout": "IPY_MODEL_74c767383218458094552abeda7cf5a8",
|
580 |
-
"max": 16,
|
581 |
-
"style": "IPY_MODEL_b9c8d4aba50241e4873535d5253bc431",
|
582 |
-
"value": 8
|
583 |
}
|
584 |
},
|
585 |
-
"
|
586 |
-
"model_module": "@jupyter-widgets/base",
|
587 |
-
"model_module_version": "2.0.0",
|
588 |
-
"model_name": "LayoutModel",
|
589 |
-
"state": {}
|
590 |
-
},
|
591 |
-
"03f87ed3d767468fa018b33a57eb94cc": {
|
592 |
"model_module": "@jupyter-widgets/controls",
|
593 |
"model_module_version": "2.0.0",
|
594 |
-
"model_name": "
|
595 |
"state": {
|
596 |
-
"
|
597 |
-
|
598 |
-
|
599 |
-
"IPY_MODEL_06455df8a89646fa993fee1979052f1e"
|
600 |
-
],
|
601 |
-
"layout": "IPY_MODEL_73bc039f53694da9ab33d38f3105ff84"
|
602 |
}
|
603 |
},
|
604 |
-
"
|
605 |
"model_module": "@jupyter-widgets/controls",
|
606 |
"model_module_version": "2.0.0",
|
607 |
"model_name": "HBoxModel",
|
608 |
"state": {
|
609 |
"children": [
|
610 |
-
"
|
611 |
-
"
|
612 |
-
"
|
613 |
],
|
614 |
-
"layout": "
|
615 |
-
}
|
616 |
-
},
|
617 |
-
"05222193081f48b9be6bfc7d641ebb74": {
|
618 |
-
"model_module": "@jupyter-widgets/controls",
|
619 |
-
"model_module_version": "2.0.0",
|
620 |
-
"model_name": "FloatProgressModel",
|
621 |
-
"state": {
|
622 |
-
"bar_style": "success",
|
623 |
-
"layout": "IPY_MODEL_17a3ef38fb2247309b10e3ceb637b3a3",
|
624 |
-
"max": 16,
|
625 |
-
"style": "IPY_MODEL_a8c890c01841474aa7bc13026223fb0f",
|
626 |
-
"value": 16
|
627 |
}
|
628 |
},
|
629 |
-
"
|
630 |
"model_module": "@jupyter-widgets/controls",
|
631 |
"model_module_version": "2.0.0",
|
632 |
"model_name": "FloatProgressModel",
|
633 |
"state": {
|
634 |
-
"
|
635 |
-
"
|
636 |
-
"
|
637 |
-
"style": "IPY_MODEL_1ff383b756164e788e5e03be30f715a1",
|
638 |
-
"value": 3
|
639 |
-
}
|
640 |
-
},
|
641 |
-
"06455df8a89646fa993fee1979052f1e": {
|
642 |
-
"model_module": "@jupyter-widgets/controls",
|
643 |
-
"model_module_version": "2.0.0",
|
644 |
-
"model_name": "HTMLModel",
|
645 |
-
"state": {
|
646 |
-
"layout": "IPY_MODEL_7fa6e2baf01f48758b14ecff82b6b66a",
|
647 |
-
"style": "IPY_MODEL_c080db3fe74a4fddad2f70f4c3b066c9",
|
648 |
-
"value": " 0/29 [00:00<?, ?it/s]"
|
649 |
}
|
650 |
},
|
651 |
-
"
|
652 |
"model_module": "@jupyter-widgets/base",
|
653 |
"model_module_version": "2.0.0",
|
654 |
"model_name": "LayoutModel",
|
655 |
"state": {}
|
656 |
},
|
657 |
-
"
|
658 |
-
"model_module": "@jupyter-widgets/controls",
|
659 |
-
"model_module_version": "2.0.0",
|
660 |
-
"model_name": "FloatProgressModel",
|
661 |
-
"state": {
|
662 |
-
"bar_style": "success",
|
663 |
-
"layout": "IPY_MODEL_8b6f74e2cce947dbba9ffcdc474f7266",
|
664 |
-
"max": 28,
|
665 |
-
"style": "IPY_MODEL_9bfc0fbbe907411682d8f6fbd3ff3b5c",
|
666 |
-
"value": 28
|
667 |
-
}
|
668 |
-
},
|
669 |
-
"070a3885f56e4c868105e1890b6e22c6": {
|
670 |
"model_module": "@jupyter-widgets/controls",
|
671 |
"model_module_version": "2.0.0",
|
672 |
-
"model_name": "
|
673 |
"state": {
|
674 |
-
"description_width": ""
|
|
|
|
|
675 |
}
|
676 |
},
|
677 |
-
"
|
678 |
"model_module": "@jupyter-widgets/controls",
|
679 |
"model_module_version": "2.0.0",
|
680 |
"model_name": "FloatProgressModel",
|
681 |
"state": {
|
682 |
-
"bar_style": "
|
683 |
-
"layout": "
|
684 |
-
"max":
|
685 |
-
"style": "
|
686 |
-
"value": 16
|
687 |
}
|
688 |
},
|
689 |
-
"
|
690 |
"model_module": "@jupyter-widgets/controls",
|
691 |
"model_module_version": "2.0.0",
|
692 |
-
"model_name": "
|
693 |
"state": {
|
694 |
-
"
|
695 |
-
|
696 |
-
|
|
|
|
|
|
|
697 |
}
|
698 |
},
|
699 |
-
"
|
700 |
"model_module": "@jupyter-widgets/base",
|
701 |
"model_module_version": "2.0.0",
|
702 |
"model_name": "LayoutModel",
|
703 |
"state": {}
|
704 |
},
|
705 |
-
"
|
706 |
-
"model_module": "@jupyter-widgets/controls",
|
707 |
-
"model_module_version": "2.0.0",
|
708 |
-
"model_name": "FloatProgressModel",
|
709 |
-
"state": {
|
710 |
-
"bar_style": "success",
|
711 |
-
"layout": "IPY_MODEL_0dec17085c864428820c8f9fd5bfd882",
|
712 |
-
"max": 25,
|
713 |
-
"style": "IPY_MODEL_070a3885f56e4c868105e1890b6e22c6",
|
714 |
-
"value": 25
|
715 |
-
}
|
716 |
-
},
|
717 |
-
"0cf24b3f362a423f9ec09410b2da7ab9": {
|
718 |
"model_module": "@jupyter-widgets/controls",
|
719 |
"model_module_version": "2.0.0",
|
720 |
"model_name": "HTMLStyleModel",
|
@@ -724,59 +649,17 @@
|
|
724 |
"text_color": null
|
725 |
}
|
726 |
},
|
727 |
-
"
|
728 |
-
"model_module": "@jupyter-widgets/base",
|
729 |
-
"model_module_version": "2.0.0",
|
730 |
-
"model_name": "LayoutModel",
|
731 |
-
"state": {}
|
732 |
-
},
|
733 |
-
"0dec17085c864428820c8f9fd5bfd882": {
|
734 |
-
"model_module": "@jupyter-widgets/base",
|
735 |
-
"model_module_version": "2.0.0",
|
736 |
-
"model_name": "LayoutModel",
|
737 |
-
"state": {}
|
738 |
-
},
|
739 |
-
"1191615f21194ca48fb25f9533117b87": {
|
740 |
-
"model_module": "@jupyter-widgets/base",
|
741 |
-
"model_module_version": "2.0.0",
|
742 |
-
"model_name": "LayoutModel",
|
743 |
-
"state": {}
|
744 |
-
},
|
745 |
-
"12b05791535a4222830d69a025e7c76f": {
|
746 |
"model_module": "@jupyter-widgets/controls",
|
747 |
"model_module_version": "2.0.0",
|
748 |
"model_name": "HTMLModel",
|
749 |
"state": {
|
750 |
-
"layout": "
|
751 |
-
"style": "
|
752 |
-
"value": "
|
753 |
-
}
|
754 |
-
},
|
755 |
-
"13f57927f07149a3b5eaee9a4de745fc": {
|
756 |
-
"model_module": "@jupyter-widgets/base",
|
757 |
-
"model_module_version": "2.0.0",
|
758 |
-
"model_name": "LayoutModel",
|
759 |
-
"state": {}
|
760 |
-
},
|
761 |
-
"175f4a5c23fd4e33839d75ea09bd0b63": {
|
762 |
-
"model_module": "@jupyter-widgets/controls",
|
763 |
-
"model_module_version": "2.0.0",
|
764 |
-
"model_name": "FloatProgressModel",
|
765 |
-
"state": {
|
766 |
-
"bar_style": "success",
|
767 |
-
"layout": "IPY_MODEL_2524bedd5427411a9190237d797e2185",
|
768 |
-
"max": 24,
|
769 |
-
"style": "IPY_MODEL_1ddb98b8b01045ca839a725f3d7940b4",
|
770 |
-
"value": 24
|
771 |
}
|
772 |
},
|
773 |
-
"
|
774 |
-
"model_module": "@jupyter-widgets/base",
|
775 |
-
"model_module_version": "2.0.0",
|
776 |
-
"model_name": "LayoutModel",
|
777 |
-
"state": {}
|
778 |
-
},
|
779 |
-
"1b5af72876ef4a4ea02b42370d798860": {
|
780 |
"model_module": "@jupyter-widgets/controls",
|
781 |
"model_module_version": "2.0.0",
|
782 |
"model_name": "HTMLStyleModel",
|
@@ -786,20 +669,7 @@
|
|
786 |
"text_color": null
|
787 |
}
|
788 |
},
|
789 |
-
"
|
790 |
-
"model_module": "@jupyter-widgets/controls",
|
791 |
-
"model_module_version": "2.0.0",
|
792 |
-
"model_name": "HBoxModel",
|
793 |
-
"state": {
|
794 |
-
"children": [
|
795 |
-
"IPY_MODEL_80b54d27120c4447b7b71e3cfd236efd",
|
796 |
-
"IPY_MODEL_a0a18912938849328eaeed3a3b56e568",
|
797 |
-
"IPY_MODEL_fe1e85dd7119422a89688939420ae705"
|
798 |
-
],
|
799 |
-
"layout": "IPY_MODEL_41d948f60f0e4c64bfa963937192ff05"
|
800 |
-
}
|
801 |
-
},
|
802 |
-
"1ddb98b8b01045ca839a725f3d7940b4": {
|
803 |
"model_module": "@jupyter-widgets/controls",
|
804 |
"model_module_version": "2.0.0",
|
805 |
"model_name": "ProgressStyleModel",
|
@@ -807,7 +677,7 @@
|
|
807 |
"description_width": ""
|
808 |
}
|
809 |
},
|
810 |
-
"
|
811 |
"model_module": "@jupyter-widgets/controls",
|
812 |
"model_module_version": "2.0.0",
|
813 |
"model_name": "ProgressStyleModel",
|
@@ -815,152 +685,98 @@
|
|
815 |
"description_width": ""
|
816 |
}
|
817 |
},
|
818 |
-
"
|
819 |
-
"model_module": "@jupyter-widgets/controls",
|
820 |
-
"model_module_version": "2.0.0",
|
821 |
-
"model_name": "HTMLModel",
|
822 |
-
"state": {
|
823 |
-
"layout": "IPY_MODEL_a010f8415b9140fd9851f8976fa1b01a",
|
824 |
-
"style": "IPY_MODEL_e8bc898cab2647f99dc9e0276a4c5802",
|
825 |
-
"value": "100%"
|
826 |
-
}
|
827 |
-
},
|
828 |
-
"2524bedd5427411a9190237d797e2185": {
|
829 |
-
"model_module": "@jupyter-widgets/base",
|
830 |
-
"model_module_version": "2.0.0",
|
831 |
-
"model_name": "LayoutModel",
|
832 |
-
"state": {}
|
833 |
-
},
|
834 |
-
"25dd92e9748b478586a15a3b2115b106": {
|
835 |
-
"model_module": "@jupyter-widgets/base",
|
836 |
-
"model_module_version": "2.0.0",
|
837 |
-
"model_name": "LayoutModel",
|
838 |
-
"state": {}
|
839 |
-
},
|
840 |
-
"293e634149a84e368597d71b93e9028d": {
|
841 |
-
"model_module": "@jupyter-widgets/controls",
|
842 |
-
"model_module_version": "2.0.0",
|
843 |
-
"model_name": "HTMLModel",
|
844 |
-
"state": {
|
845 |
-
"layout": "IPY_MODEL_83fb5c716e7f4ca0bd2f957f71bd76c3",
|
846 |
-
"style": "IPY_MODEL_cba3272c3ca04cc6b44412aeb7b03d6e",
|
847 |
-
"value": "100%"
|
848 |
-
}
|
849 |
-
},
|
850 |
-
"295482d5db12405c806572738cbff31e": {
|
851 |
-
"model_module": "@jupyter-widgets/base",
|
852 |
-
"model_module_version": "2.0.0",
|
853 |
-
"model_name": "LayoutModel",
|
854 |
-
"state": {}
|
855 |
-
},
|
856 |
-
"2a9e6e02eea34005972127793e52a1b9": {
|
857 |
-
"model_module": "@jupyter-widgets/base",
|
858 |
-
"model_module_version": "2.0.0",
|
859 |
-
"model_name": "LayoutModel",
|
860 |
-
"state": {}
|
861 |
-
},
|
862 |
-
"2b8f557e0a9d44a4916ae94e68829d91": {
|
863 |
"model_module": "@jupyter-widgets/controls",
|
864 |
"model_module_version": "2.0.0",
|
865 |
-
"model_name": "
|
866 |
"state": {
|
867 |
-
"
|
868 |
-
|
869 |
-
|
870 |
-
"IPY_MODEL_77f335d26be2432397efb1303bb698c1"
|
871 |
-
],
|
872 |
-
"layout": "IPY_MODEL_933323d0cd844d7eae9b833c9bfcbc7a"
|
873 |
}
|
874 |
},
|
875 |
-
"
|
876 |
"model_module": "@jupyter-widgets/base",
|
877 |
"model_module_version": "2.0.0",
|
878 |
"model_name": "LayoutModel",
|
879 |
"state": {}
|
880 |
},
|
881 |
-
"
|
882 |
"model_module": "@jupyter-widgets/base",
|
883 |
"model_module_version": "2.0.0",
|
884 |
"model_name": "LayoutModel",
|
885 |
"state": {}
|
886 |
},
|
887 |
-
"
|
888 |
"model_module": "@jupyter-widgets/base",
|
889 |
"model_module_version": "2.0.0",
|
890 |
"model_name": "LayoutModel",
|
891 |
"state": {}
|
892 |
},
|
893 |
-
"
|
894 |
-
"model_module": "@jupyter-widgets/controls",
|
895 |
-
"model_module_version": "2.0.0",
|
896 |
-
"model_name": "ProgressStyleModel",
|
897 |
-
"state": {
|
898 |
-
"description_width": ""
|
899 |
-
}
|
900 |
-
},
|
901 |
-
"322d906591404273865850242dd3b52a": {
|
902 |
"model_module": "@jupyter-widgets/controls",
|
903 |
"model_module_version": "2.0.0",
|
904 |
"model_name": "FloatProgressModel",
|
905 |
"state": {
|
906 |
"bar_style": "success",
|
907 |
-
"layout": "
|
908 |
-
"max":
|
909 |
-
"style": "
|
910 |
-
"value":
|
911 |
}
|
912 |
},
|
913 |
-
"
|
914 |
"model_module": "@jupyter-widgets/controls",
|
915 |
"model_module_version": "2.0.0",
|
916 |
-
"model_name": "
|
917 |
"state": {
|
918 |
-
"
|
919 |
-
"
|
920 |
-
"
|
921 |
}
|
922 |
},
|
923 |
-
"
|
924 |
"model_module": "@jupyter-widgets/controls",
|
925 |
"model_module_version": "2.0.0",
|
926 |
"model_name": "HTMLModel",
|
927 |
"state": {
|
928 |
-
"layout": "
|
929 |
-
"style": "
|
930 |
-
"value": "
|
931 |
}
|
932 |
},
|
933 |
-
"
|
934 |
"model_module": "@jupyter-widgets/controls",
|
935 |
"model_module_version": "2.0.0",
|
936 |
-
"model_name": "
|
937 |
"state": {
|
938 |
-
"
|
939 |
-
|
940 |
-
|
|
|
|
|
|
|
941 |
}
|
942 |
},
|
943 |
-
"
|
944 |
-
"model_module": "@jupyter-widgets/
|
945 |
"model_module_version": "2.0.0",
|
946 |
-
"model_name": "
|
947 |
-
"state": {
|
948 |
-
"description_width": "",
|
949 |
-
"font_size": null,
|
950 |
-
"text_color": null
|
951 |
-
}
|
952 |
},
|
953 |
-
"
|
954 |
-
"model_module": "@jupyter-widgets/
|
955 |
"model_module_version": "2.0.0",
|
956 |
-
"model_name": "
|
957 |
-
"state": {
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
|
|
|
|
962 |
},
|
963 |
-
"
|
964 |
"model_module": "@jupyter-widgets/controls",
|
965 |
"model_module_version": "2.0.0",
|
966 |
"model_name": "HTMLStyleModel",
|
@@ -970,1522 +786,41 @@
|
|
970 |
"text_color": null
|
971 |
}
|
972 |
},
|
973 |
-
"
|
974 |
-
"model_module": "@jupyter-widgets/controls",
|
975 |
-
"model_module_version": "2.0.0",
|
976 |
-
"model_name": "FloatProgressModel",
|
977 |
-
"state": {
|
978 |
-
"layout": "IPY_MODEL_6bda5d4f28994279bee7738cfa44b4fd",
|
979 |
-
"max": 16,
|
980 |
-
"style": "IPY_MODEL_71fd39baf4074c9e8179af717aeaf2db",
|
981 |
-
"value": 7
|
982 |
-
}
|
983 |
-
},
|
984 |
-
"41d948f60f0e4c64bfa963937192ff05": {
|
985 |
"model_module": "@jupyter-widgets/base",
|
986 |
"model_module_version": "2.0.0",
|
987 |
"model_name": "LayoutModel",
|
988 |
"state": {}
|
989 |
},
|
990 |
-
"
|
991 |
-
"model_module": "@jupyter-widgets/controls",
|
992 |
-
"model_module_version": "2.0.0",
|
993 |
-
"model_name": "HBoxModel",
|
994 |
-
"state": {
|
995 |
-
"children": [
|
996 |
-
"IPY_MODEL_50cb1dd6ac2b4816991021e7354707fa",
|
997 |
-
"IPY_MODEL_72ea9ce39e954fb88be19c28273e595d",
|
998 |
-
"IPY_MODEL_9ec6a648dab147cf9a909aadab83e895"
|
999 |
-
],
|
1000 |
-
"layout": "IPY_MODEL_31aacb49170c41faac563c20843afc7a"
|
1001 |
-
}
|
1002 |
-
},
|
1003 |
-
"467b0af2f3a14af783422d4c1ffe2e37": {
|
1004 |
"model_module": "@jupyter-widgets/base",
|
1005 |
"model_module_version": "2.0.0",
|
1006 |
"model_name": "LayoutModel",
|
1007 |
"state": {}
|
1008 |
},
|
1009 |
-
"
|
1010 |
-
"model_module": "@jupyter-widgets/
|
1011 |
-
"model_module_version": "2.0.0",
|
1012 |
-
"model_name": "HTMLModel",
|
1013 |
-
"state": {
|
1014 |
-
"layout": "IPY_MODEL_8172ee05551d4cdb8b1ce670be6df434",
|
1015 |
-
"style": "IPY_MODEL_959ee0a159654724a2145eb8c9d084b9",
|
1016 |
-
"value": " 50%"
|
1017 |
-
}
|
1018 |
-
},
|
1019 |
-
"4dae4e3e455443b8a5ea8bb0e38abc38": {
|
1020 |
-
"model_module": "@jupyter-widgets/controls",
|
1021 |
-
"model_module_version": "2.0.0",
|
1022 |
-
"model_name": "HTMLModel",
|
1023 |
-
"state": {
|
1024 |
-
"layout": "IPY_MODEL_e172dd2b27b9474fafa071ebd346e6fd",
|
1025 |
-
"style": "IPY_MODEL_e4de6f7c9c8c4afdb2c3bdeb5a1da73e",
|
1026 |
-
"value": " 24/24 [00:00<00:00, 6216.85it/s]"
|
1027 |
-
}
|
1028 |
-
},
|
1029 |
-
"4ee066ad5f4d402ea048da9e8e768d77": {
|
1030 |
-
"model_module": "@jupyter-widgets/controls",
|
1031 |
-
"model_module_version": "2.0.0",
|
1032 |
-
"model_name": "HBoxModel",
|
1033 |
-
"state": {
|
1034 |
-
"children": [
|
1035 |
-
"IPY_MODEL_af105a5a9c654af89e361df4a79a8b18",
|
1036 |
-
"IPY_MODEL_daf6d481c6ed4a13895c775d822d0242",
|
1037 |
-
"IPY_MODEL_50f5402ab36c4cd0857b5e96a7eeb30f"
|
1038 |
-
],
|
1039 |
-
"layout": "IPY_MODEL_a52771b4ba7a4d5dbc3fa3171beb8bc1"
|
1040 |
-
}
|
1041 |
-
},
|
1042 |
-
"50a9ac56cb7b4b47a1ec4bec6c8f1b9f": {
|
1043 |
-
"model_module": "@jupyter-widgets/controls",
|
1044 |
-
"model_module_version": "2.0.0",
|
1045 |
-
"model_name": "HTMLStyleModel",
|
1046 |
-
"state": {
|
1047 |
-
"description_width": "",
|
1048 |
-
"font_size": null,
|
1049 |
-
"text_color": null
|
1050 |
-
}
|
1051 |
-
},
|
1052 |
-
"50cb1dd6ac2b4816991021e7354707fa": {
|
1053 |
-
"model_module": "@jupyter-widgets/controls",
|
1054 |
"model_module_version": "2.0.0",
|
1055 |
-
"model_name": "
|
1056 |
-
"state": {
|
1057 |
-
"layout": "IPY_MODEL_8f389f61d8574799be79de57b9da9c7f",
|
1058 |
-
"style": "IPY_MODEL_68c71b79cde946048532cb1745de0162",
|
1059 |
-
"value": "100%"
|
1060 |
-
}
|
1061 |
},
|
1062 |
-
"
|
1063 |
"model_module": "@jupyter-widgets/controls",
|
1064 |
"model_module_version": "2.0.0",
|
1065 |
"model_name": "HTMLModel",
|
1066 |
"state": {
|
1067 |
-
"layout": "
|
1068 |
-
"style": "
|
1069 |
-
"value": "
|
1070 |
}
|
1071 |
},
|
1072 |
-
"
|
1073 |
-
"model_module": "@jupyter-widgets/
|
1074 |
-
"model_module_version": "2.0.0",
|
1075 |
-
"model_name": "HTMLModel",
|
1076 |
-
"state": {
|
1077 |
-
"layout": "IPY_MODEL_0b1640f03887470d8db0697f71b279a5",
|
1078 |
-
"style": "IPY_MODEL_bdcb506bd5304193898a0d69b84696b4",
|
1079 |
-
"value": " 28/28 [00:00<00:00, 6071.47it/s]"
|
1080 |
-
}
|
1081 |
-
},
|
1082 |
-
"532d767b9d3b4a11a17dce8f1688ed9b": {
|
1083 |
-
"model_module": "@jupyter-widgets/controls",
|
1084 |
-
"model_module_version": "2.0.0",
|
1085 |
-
"model_name": "ProgressStyleModel",
|
1086 |
-
"state": {
|
1087 |
-
"description_width": ""
|
1088 |
-
}
|
1089 |
-
},
|
1090 |
-
"53a8a534e65c49ea95f28c4383c62e77": {
|
1091 |
-
"model_module": "@jupyter-widgets/controls",
|
1092 |
-
"model_module_version": "2.0.0",
|
1093 |
-
"model_name": "HTMLModel",
|
1094 |
-
"state": {
|
1095 |
-
"layout": "IPY_MODEL_d20a28ec1fa5450aaa3116f57a4969f2",
|
1096 |
-
"style": "IPY_MODEL_e7a0e0cbfdb44f8ebaaab4898eb7e5bb",
|
1097 |
-
"value": " 7/16 [00:14<00:00, 36.25it/s]"
|
1098 |
-
}
|
1099 |
-
},
|
1100 |
-
"56acbad3ec18465389c8084e847b5d1e": {
|
1101 |
-
"model_module": "@jupyter-widgets/controls",
|
1102 |
-
"model_module_version": "2.0.0",
|
1103 |
-
"model_name": "HTMLModel",
|
1104 |
-
"state": {
|
1105 |
-
"layout": "IPY_MODEL_310133afa8104798a90c9518716b96dc",
|
1106 |
-
"style": "IPY_MODEL_cd244af01c3e4707a75fa3427199f298",
|
1107 |
-
"value": "100%"
|
1108 |
-
}
|
1109 |
-
},
|
1110 |
-
"56d7aab73ad546698d12e1190ebf89d3": {
|
1111 |
-
"model_module": "@jupyter-widgets/controls",
|
1112 |
-
"model_module_version": "2.0.0",
|
1113 |
-
"model_name": "HTMLStyleModel",
|
1114 |
-
"state": {
|
1115 |
-
"description_width": "",
|
1116 |
-
"font_size": null,
|
1117 |
-
"text_color": null
|
1118 |
-
}
|
1119 |
-
},
|
1120 |
-
"56f11c401d9749df8743fd8126f2e376": {
|
1121 |
-
"model_module": "@jupyter-widgets/base",
|
1122 |
-
"model_module_version": "2.0.0",
|
1123 |
-
"model_name": "LayoutModel",
|
1124 |
-
"state": {}
|
1125 |
-
},
|
1126 |
-
"57b5d706248f4a048a0840b13eab6933": {
|
1127 |
-
"model_module": "@jupyter-widgets/base",
|
1128 |
-
"model_module_version": "2.0.0",
|
1129 |
-
"model_name": "LayoutModel",
|
1130 |
-
"state": {}
|
1131 |
-
},
|
1132 |
-
"58075d0c5c1d431dba009b2e92efb09b": {
|
1133 |
-
"model_module": "@jupyter-widgets/base",
|
1134 |
-
"model_module_version": "2.0.0",
|
1135 |
-
"model_name": "LayoutModel",
|
1136 |
-
"state": {}
|
1137 |
-
},
|
1138 |
-
"59e96468b0ab4f2daf3ba677a2af75be": {
|
1139 |
-
"model_module": "@jupyter-widgets/base",
|
1140 |
-
"model_module_version": "2.0.0",
|
1141 |
-
"model_name": "LayoutModel",
|
1142 |
-
"state": {}
|
1143 |
-
},
|
1144 |
-
"5b762a3b8d8c408f881e23040afe9d4d": {
|
1145 |
-
"model_module": "@jupyter-widgets/base",
|
1146 |
-
"model_module_version": "2.0.0",
|
1147 |
-
"model_name": "LayoutModel",
|
1148 |
-
"state": {}
|
1149 |
-
},
|
1150 |
-
"5cd1c2a9176243b89760cfdc3370846a": {
|
1151 |
-
"model_module": "@jupyter-widgets/controls",
|
1152 |
-
"model_module_version": "2.0.0",
|
1153 |
-
"model_name": "FloatProgressModel",
|
1154 |
-
"state": {
|
1155 |
-
"bar_style": "success",
|
1156 |
-
"layout": "IPY_MODEL_a7bc7584ec024e2caaefcd0e230540b6",
|
1157 |
-
"max": 19,
|
1158 |
-
"style": "IPY_MODEL_804fc20e748c49328ed856d47b7d19ea",
|
1159 |
-
"value": 19
|
1160 |
-
}
|
1161 |
-
},
|
1162 |
-
"5d5b786ef5824065bbaf0ade2f10ff97": {
|
1163 |
-
"model_module": "@jupyter-widgets/base",
|
1164 |
-
"model_module_version": "2.0.0",
|
1165 |
-
"model_name": "LayoutModel",
|
1166 |
-
"state": {}
|
1167 |
-
},
|
1168 |
-
"5e79b7bc8b4340ff9d35755ba859a2ba": {
|
1169 |
-
"model_module": "@jupyter-widgets/controls",
|
1170 |
-
"model_module_version": "2.0.0",
|
1171 |
-
"model_name": "HBoxModel",
|
1172 |
-
"state": {
|
1173 |
-
"children": [
|
1174 |
-
"IPY_MODEL_63b8750d1dff48e78a596175378f9376",
|
1175 |
-
"IPY_MODEL_322d906591404273865850242dd3b52a",
|
1176 |
-
"IPY_MODEL_a8c6939262b640b6b530e8c76959868f"
|
1177 |
-
],
|
1178 |
-
"layout": "IPY_MODEL_58075d0c5c1d431dba009b2e92efb09b"
|
1179 |
-
}
|
1180 |
-
},
|
1181 |
-
"608808626eae492fa91b0d68f47dff04": {
|
1182 |
-
"model_module": "@jupyter-widgets/base",
|
1183 |
-
"model_module_version": "2.0.0",
|
1184 |
-
"model_name": "LayoutModel",
|
1185 |
-
"state": {}
|
1186 |
-
},
|
1187 |
-
"60b697fdd03448cca047db6230e0f5a9": {
|
1188 |
-
"model_module": "@jupyter-widgets/base",
|
1189 |
-
"model_module_version": "2.0.0",
|
1190 |
-
"model_name": "LayoutModel",
|
1191 |
-
"state": {}
|
1192 |
-
},
|
1193 |
-
"60bd806842d64d68bf497250d9782f23": {
|
1194 |
-
"model_module": "@jupyter-widgets/base",
|
1195 |
-
"model_module_version": "2.0.0",
|
1196 |
-
"model_name": "LayoutModel",
|
1197 |
-
"state": {}
|
1198 |
-
},
|
1199 |
-
"62719a7465b345979bb2459d04cebef4": {
|
1200 |
-
"model_module": "@jupyter-widgets/base",
|
1201 |
-
"model_module_version": "2.0.0",
|
1202 |
-
"model_name": "LayoutModel",
|
1203 |
-
"state": {}
|
1204 |
-
},
|
1205 |
-
"63083946b8b84267b420430d950b1930": {
|
1206 |
-
"model_module": "@jupyter-widgets/base",
|
1207 |
-
"model_module_version": "2.0.0",
|
1208 |
-
"model_name": "LayoutModel",
|
1209 |
-
"state": {}
|
1210 |
-
},
|
1211 |
-
"633906c1efea4d78b6d3c80c8dabe668": {
|
1212 |
-
"model_module": "@jupyter-widgets/controls",
|
1213 |
-
"model_module_version": "2.0.0",
|
1214 |
-
"model_name": "HTMLStyleModel",
|
1215 |
-
"state": {
|
1216 |
-
"description_width": "",
|
1217 |
-
"font_size": null,
|
1218 |
-
"text_color": null
|
1219 |
-
}
|
1220 |
-
},
|
1221 |
-
"63b8750d1dff48e78a596175378f9376": {
|
1222 |
-
"model_module": "@jupyter-widgets/controls",
|
1223 |
-
"model_module_version": "2.0.0",
|
1224 |
-
"model_name": "HTMLModel",
|
1225 |
-
"state": {
|
1226 |
-
"layout": "IPY_MODEL_5b762a3b8d8c408f881e23040afe9d4d",
|
1227 |
-
"style": "IPY_MODEL_dfc93a33fc944a93a224115c6b51164d",
|
1228 |
-
"value": "100%"
|
1229 |
-
}
|
1230 |
-
},
|
1231 |
-
"63c86c8b3ccc424f9227cf7a02e0abb2": {
|
1232 |
-
"model_module": "@jupyter-widgets/controls",
|
1233 |
-
"model_module_version": "2.0.0",
|
1234 |
-
"model_name": "ProgressStyleModel",
|
1235 |
-
"state": {
|
1236 |
-
"description_width": ""
|
1237 |
-
}
|
1238 |
-
},
|
1239 |
-
"647972b9d960422db9c8fd95cdfe4535": {
|
1240 |
-
"model_module": "@jupyter-widgets/controls",
|
1241 |
-
"model_module_version": "2.0.0",
|
1242 |
-
"model_name": "HTMLModel",
|
1243 |
-
"state": {
|
1244 |
-
"layout": "IPY_MODEL_b3141d40ec414bb7b062ec6a624a582b",
|
1245 |
-
"style": "IPY_MODEL_fe5718022ac24b5b9a0955ca9c48dad1",
|
1246 |
-
"value": "100%"
|
1247 |
-
}
|
1248 |
-
},
|
1249 |
-
"64cc1c7586df4f8aba71918709f35f44": {
|
1250 |
-
"model_module": "@jupyter-widgets/base",
|
1251 |
-
"model_module_version": "2.0.0",
|
1252 |
-
"model_name": "LayoutModel",
|
1253 |
-
"state": {}
|
1254 |
-
},
|
1255 |
-
"654d558cb845478a8603eb1390370944": {
|
1256 |
-
"model_module": "@jupyter-widgets/controls",
|
1257 |
-
"model_module_version": "2.0.0",
|
1258 |
-
"model_name": "ProgressStyleModel",
|
1259 |
-
"state": {
|
1260 |
-
"description_width": ""
|
1261 |
-
}
|
1262 |
-
},
|
1263 |
-
"6568ffaad27a4ce3bb540f1fc3440e10": {
|
1264 |
-
"model_module": "@jupyter-widgets/controls",
|
1265 |
-
"model_module_version": "2.0.0",
|
1266 |
-
"model_name": "HBoxModel",
|
1267 |
-
"state": {
|
1268 |
-
"children": [
|
1269 |
-
"IPY_MODEL_9de20635d8a14299b600e5b74dc4ef3b",
|
1270 |
-
"IPY_MODEL_068d7d8108c54a5b811dffcfaf40239e",
|
1271 |
-
"IPY_MODEL_8f54ebddba784e1b964877b447e6baa6"
|
1272 |
-
],
|
1273 |
-
"layout": "IPY_MODEL_64cc1c7586df4f8aba71918709f35f44"
|
1274 |
-
}
|
1275 |
-
},
|
1276 |
-
"675e3757f1c448b6808ee2bcef0674af": {
|
1277 |
-
"model_module": "@jupyter-widgets/controls",
|
1278 |
-
"model_module_version": "2.0.0",
|
1279 |
-
"model_name": "HTMLStyleModel",
|
1280 |
-
"state": {
|
1281 |
-
"description_width": "",
|
1282 |
-
"font_size": null,
|
1283 |
-
"text_color": null
|
1284 |
-
}
|
1285 |
-
},
|
1286 |
-
"6873664e4ee749ee91a1955d9d7a3a5e": {
|
1287 |
-
"model_module": "@jupyter-widgets/controls",
|
1288 |
-
"model_module_version": "2.0.0",
|
1289 |
-
"model_name": "HTMLStyleModel",
|
1290 |
-
"state": {
|
1291 |
-
"description_width": "",
|
1292 |
-
"font_size": null,
|
1293 |
-
"text_color": null
|
1294 |
-
}
|
1295 |
-
},
|
1296 |
-
"68c71b79cde946048532cb1745de0162": {
|
1297 |
-
"model_module": "@jupyter-widgets/controls",
|
1298 |
-
"model_module_version": "2.0.0",
|
1299 |
-
"model_name": "HTMLStyleModel",
|
1300 |
-
"state": {
|
1301 |
-
"description_width": "",
|
1302 |
-
"font_size": null,
|
1303 |
-
"text_color": null
|
1304 |
-
}
|
1305 |
-
},
|
1306 |
-
"6b66b2d61eed4e909d292586b67b6658": {
|
1307 |
-
"model_module": "@jupyter-widgets/controls",
|
1308 |
-
"model_module_version": "2.0.0",
|
1309 |
-
"model_name": "HTMLStyleModel",
|
1310 |
-
"state": {
|
1311 |
-
"description_width": "",
|
1312 |
-
"font_size": null,
|
1313 |
-
"text_color": null
|
1314 |
-
}
|
1315 |
-
},
|
1316 |
-
"6bda5d4f28994279bee7738cfa44b4fd": {
|
1317 |
-
"model_module": "@jupyter-widgets/base",
|
1318 |
-
"model_module_version": "2.0.0",
|
1319 |
-
"model_name": "LayoutModel",
|
1320 |
-
"state": {}
|
1321 |
-
},
|
1322 |
-
"6e600c724d3a4dc1a9a6eb526eaffe5a": {
|
1323 |
-
"model_module": "@jupyter-widgets/controls",
|
1324 |
-
"model_module_version": "2.0.0",
|
1325 |
-
"model_name": "HTMLStyleModel",
|
1326 |
-
"state": {
|
1327 |
-
"description_width": "",
|
1328 |
-
"font_size": null,
|
1329 |
-
"text_color": null
|
1330 |
-
}
|
1331 |
-
},
|
1332 |
-
"7069efff195840d2b4008ed452839775": {
|
1333 |
-
"model_module": "@jupyter-widgets/base",
|
1334 |
-
"model_module_version": "2.0.0",
|
1335 |
-
"model_name": "LayoutModel",
|
1336 |
-
"state": {}
|
1337 |
-
},
|
1338 |
-
"70aa20bc35f54b12b7b7dd52064adaa4": {
|
1339 |
-
"model_module": "@jupyter-widgets/controls",
|
1340 |
-
"model_module_version": "2.0.0",
|
1341 |
-
"model_name": "FloatProgressModel",
|
1342 |
-
"state": {
|
1343 |
-
"bar_style": "success",
|
1344 |
-
"layout": "IPY_MODEL_7bdff38a044f46b59128ac58175b363f",
|
1345 |
-
"max": 25,
|
1346 |
-
"style": "IPY_MODEL_31ee00614a4b4fefb4809515404b87c6",
|
1347 |
-
"value": 25
|
1348 |
-
}
|
1349 |
-
},
|
1350 |
-
"712b5171e22e4d298a1f95da52aef92e": {
|
1351 |
-
"model_module": "@jupyter-widgets/controls",
|
1352 |
-
"model_module_version": "2.0.0",
|
1353 |
-
"model_name": "FloatProgressModel",
|
1354 |
-
"state": {
|
1355 |
-
"bar_style": "success",
|
1356 |
-
"layout": "IPY_MODEL_13f57927f07149a3b5eaee9a4de745fc",
|
1357 |
-
"max": 19,
|
1358 |
-
"style": "IPY_MODEL_654d558cb845478a8603eb1390370944",
|
1359 |
-
"value": 19
|
1360 |
-
}
|
1361 |
-
},
|
1362 |
-
"71a242330b844e449df0f64b2f978db7": {
|
1363 |
-
"model_module": "@jupyter-widgets/controls",
|
1364 |
-
"model_module_version": "2.0.0",
|
1365 |
-
"model_name": "ProgressStyleModel",
|
1366 |
-
"state": {
|
1367 |
-
"description_width": ""
|
1368 |
-
}
|
1369 |
-
},
|
1370 |
-
"71fd39baf4074c9e8179af717aeaf2db": {
|
1371 |
-
"model_module": "@jupyter-widgets/controls",
|
1372 |
-
"model_module_version": "2.0.0",
|
1373 |
-
"model_name": "ProgressStyleModel",
|
1374 |
-
"state": {
|
1375 |
-
"description_width": ""
|
1376 |
-
}
|
1377 |
-
},
|
1378 |
-
"72ea9ce39e954fb88be19c28273e595d": {
|
1379 |
-
"model_module": "@jupyter-widgets/controls",
|
1380 |
-
"model_module_version": "2.0.0",
|
1381 |
-
"model_name": "FloatProgressModel",
|
1382 |
-
"state": {
|
1383 |
-
"bar_style": "success",
|
1384 |
-
"layout": "IPY_MODEL_ed014a43707a4ac099f4d3f135b9ae80",
|
1385 |
-
"max": 30,
|
1386 |
-
"style": "IPY_MODEL_7ab0ca6df2174cdbaad9417e745f8d4b",
|
1387 |
-
"value": 30
|
1388 |
-
}
|
1389 |
-
},
|
1390 |
-
"73bc039f53694da9ab33d38f3105ff84": {
|
1391 |
-
"model_module": "@jupyter-widgets/base",
|
1392 |
-
"model_module_version": "2.0.0",
|
1393 |
-
"model_name": "LayoutModel",
|
1394 |
-
"state": {}
|
1395 |
-
},
|
1396 |
-
"74c767383218458094552abeda7cf5a8": {
|
1397 |
-
"model_module": "@jupyter-widgets/base",
|
1398 |
-
"model_module_version": "2.0.0",
|
1399 |
-
"model_name": "LayoutModel",
|
1400 |
-
"state": {}
|
1401 |
-
},
|
1402 |
-
"771258f2a06841048273512fb2b92a74": {
|
1403 |
-
"model_module": "@jupyter-widgets/controls",
|
1404 |
-
"model_module_version": "2.0.0",
|
1405 |
-
"model_name": "HTMLStyleModel",
|
1406 |
-
"state": {
|
1407 |
-
"description_width": "",
|
1408 |
-
"font_size": null,
|
1409 |
-
"text_color": null
|
1410 |
-
}
|
1411 |
-
},
|
1412 |
-
"775d65fcddfa4df98744cbed7af5047b": {
|
1413 |
-
"model_module": "@jupyter-widgets/controls",
|
1414 |
-
"model_module_version": "2.0.0",
|
1415 |
-
"model_name": "HTMLStyleModel",
|
1416 |
-
"state": {
|
1417 |
-
"description_width": "",
|
1418 |
-
"font_size": null,
|
1419 |
-
"text_color": null
|
1420 |
-
}
|
1421 |
-
},
|
1422 |
-
"77f335d26be2432397efb1303bb698c1": {
|
1423 |
-
"model_module": "@jupyter-widgets/controls",
|
1424 |
-
"model_module_version": "2.0.0",
|
1425 |
-
"model_name": "HTMLModel",
|
1426 |
-
"state": {
|
1427 |
-
"layout": "IPY_MODEL_784a28847f1949dfafeb9b522357f35a",
|
1428 |
-
"style": "IPY_MODEL_6e600c724d3a4dc1a9a6eb526eaffe5a",
|
1429 |
-
"value": " 21/21 [00:00<00:00, 4597.82it/s]"
|
1430 |
-
}
|
1431 |
-
},
|
1432 |
-
"784a28847f1949dfafeb9b522357f35a": {
|
1433 |
-
"model_module": "@jupyter-widgets/base",
|
1434 |
-
"model_module_version": "2.0.0",
|
1435 |
-
"model_name": "LayoutModel",
|
1436 |
-
"state": {}
|
1437 |
-
},
|
1438 |
-
"79cb3d063c1f4c30a06980674c9cb75b": {
|
1439 |
-
"model_module": "@jupyter-widgets/controls",
|
1440 |
-
"model_module_version": "2.0.0",
|
1441 |
-
"model_name": "HTMLModel",
|
1442 |
-
"state": {
|
1443 |
-
"layout": "IPY_MODEL_8705a5cdd2724831898adc95b6bac5ea",
|
1444 |
-
"style": "IPY_MODEL_98227771dc6444e6a6cf6cc3969ff139",
|
1445 |
-
"value": " 22/22 [00:00<00:00, 4719.93it/s]"
|
1446 |
-
}
|
1447 |
-
},
|
1448 |
-
"7a1b1f4cbceb41e09dad9b8724d74046": {
|
1449 |
-
"model_module": "@jupyter-widgets/controls",
|
1450 |
-
"model_module_version": "2.0.0",
|
1451 |
-
"model_name": "HTMLModel",
|
1452 |
-
"state": {
|
1453 |
-
"layout": "IPY_MODEL_d81089cf727e4dc197b8556d832ad319",
|
1454 |
-
"style": "IPY_MODEL_50a9ac56cb7b4b47a1ec4bec6c8f1b9f",
|
1455 |
-
"value": " 0%"
|
1456 |
-
}
|
1457 |
-
},
|
1458 |
-
"7a5dabbab74a4cfdaebba473209a986e": {
|
1459 |
-
"model_module": "@jupyter-widgets/controls",
|
1460 |
-
"model_module_version": "2.0.0",
|
1461 |
-
"model_name": "HTMLModel",
|
1462 |
-
"state": {
|
1463 |
-
"layout": "IPY_MODEL_1191615f21194ca48fb25f9533117b87",
|
1464 |
-
"style": "IPY_MODEL_3f64ef306500456db218c844a340f0bf",
|
1465 |
-
"value": "100%"
|
1466 |
-
}
|
1467 |
-
},
|
1468 |
-
"7a95a0bbf7cb44e7a52c9a15f1931e77": {
|
1469 |
-
"model_module": "@jupyter-widgets/controls",
|
1470 |
-
"model_module_version": "2.0.0",
|
1471 |
-
"model_name": "HTMLStyleModel",
|
1472 |
-
"state": {
|
1473 |
-
"description_width": "",
|
1474 |
-
"font_size": null,
|
1475 |
-
"text_color": null
|
1476 |
-
}
|
1477 |
-
},
|
1478 |
-
"7ab0ca6df2174cdbaad9417e745f8d4b": {
|
1479 |
-
"model_module": "@jupyter-widgets/controls",
|
1480 |
-
"model_module_version": "2.0.0",
|
1481 |
-
"model_name": "ProgressStyleModel",
|
1482 |
-
"state": {
|
1483 |
-
"description_width": ""
|
1484 |
-
}
|
1485 |
-
},
|
1486 |
-
"7b66585299d44751a2913a1311245c98": {
|
1487 |
-
"model_module": "@jupyter-widgets/controls",
|
1488 |
-
"model_module_version": "2.0.0",
|
1489 |
-
"model_name": "HTMLModel",
|
1490 |
-
"state": {
|
1491 |
-
"layout": "IPY_MODEL_59e96468b0ab4f2daf3ba677a2af75be",
|
1492 |
-
"style": "IPY_MODEL_775d65fcddfa4df98744cbed7af5047b",
|
1493 |
-
"value": " 19/19 [00:00<00:00, 4907.73it/s]"
|
1494 |
-
}
|
1495 |
-
},
|
1496 |
-
"7bdff38a044f46b59128ac58175b363f": {
|
1497 |
-
"model_module": "@jupyter-widgets/base",
|
1498 |
-
"model_module_version": "2.0.0",
|
1499 |
-
"model_name": "LayoutModel",
|
1500 |
-
"state": {}
|
1501 |
-
},
|
1502 |
-
"7fa6e2baf01f48758b14ecff82b6b66a": {
|
1503 |
-
"model_module": "@jupyter-widgets/base",
|
1504 |
-
"model_module_version": "2.0.0",
|
1505 |
-
"model_name": "LayoutModel",
|
1506 |
-
"state": {}
|
1507 |
-
},
|
1508 |
-
"8035368fdc6a49e1af25ca1b63934af5": {
|
1509 |
-
"model_module": "@jupyter-widgets/base",
|
1510 |
-
"model_module_version": "2.0.0",
|
1511 |
-
"model_name": "LayoutModel",
|
1512 |
-
"state": {}
|
1513 |
-
},
|
1514 |
-
"804fc20e748c49328ed856d47b7d19ea": {
|
1515 |
-
"model_module": "@jupyter-widgets/controls",
|
1516 |
-
"model_module_version": "2.0.0",
|
1517 |
-
"model_name": "ProgressStyleModel",
|
1518 |
-
"state": {
|
1519 |
-
"description_width": ""
|
1520 |
-
}
|
1521 |
-
},
|
1522 |
-
"80b54d27120c4447b7b71e3cfd236efd": {
|
1523 |
-
"model_module": "@jupyter-widgets/controls",
|
1524 |
-
"model_module_version": "2.0.0",
|
1525 |
-
"model_name": "HTMLModel",
|
1526 |
-
"state": {
|
1527 |
-
"layout": "IPY_MODEL_a4a25dc88180447198f5a050be8405be",
|
1528 |
-
"style": "IPY_MODEL_6b66b2d61eed4e909d292586b67b6658",
|
1529 |
-
"value": "100%"
|
1530 |
-
}
|
1531 |
-
},
|
1532 |
-
"8172ee05551d4cdb8b1ce670be6df434": {
|
1533 |
-
"model_module": "@jupyter-widgets/base",
|
1534 |
-
"model_module_version": "2.0.0",
|
1535 |
-
"model_name": "LayoutModel",
|
1536 |
-
"state": {}
|
1537 |
-
},
|
1538 |
-
"81c0b3cd02ed450b85da6325254eeeb7": {
|
1539 |
-
"model_module": "@jupyter-widgets/base",
|
1540 |
-
"model_module_version": "2.0.0",
|
1541 |
-
"model_name": "LayoutModel",
|
1542 |
-
"state": {}
|
1543 |
-
},
|
1544 |
-
"82be5b1d854048a7ab1139592f4b3b95": {
|
1545 |
-
"model_module": "@jupyter-widgets/controls",
|
1546 |
-
"model_module_version": "2.0.0",
|
1547 |
-
"model_name": "HTMLModel",
|
1548 |
-
"state": {
|
1549 |
-
"layout": "IPY_MODEL_d5af07ad383945ee95ff113055051f4f",
|
1550 |
-
"style": "IPY_MODEL_ebbe757b21d34be8b2a456a90366d590",
|
1551 |
-
"value": " 25/25 [00:00<00:00, 5703.74it/s]"
|
1552 |
-
}
|
1553 |
-
},
|
1554 |
-
"838579736d9843b1b8de4a1bb2a51e0e": {
|
1555 |
-
"model_module": "@jupyter-widgets/controls",
|
1556 |
-
"model_module_version": "2.0.0",
|
1557 |
-
"model_name": "HTMLModel",
|
1558 |
-
"state": {
|
1559 |
-
"layout": "IPY_MODEL_8559eedee97d402a824f10eb01e6e6d0",
|
1560 |
-
"style": "IPY_MODEL_332c34d536a54480a2c12968458c52e6",
|
1561 |
-
"value": "100%"
|
1562 |
-
}
|
1563 |
-
},
|
1564 |
-
"83fb5c716e7f4ca0bd2f957f71bd76c3": {
|
1565 |
-
"model_module": "@jupyter-widgets/base",
|
1566 |
-
"model_module_version": "2.0.0",
|
1567 |
-
"model_name": "LayoutModel",
|
1568 |
-
"state": {}
|
1569 |
-
},
|
1570 |
-
"846febd8930547d7bf823150f4ffae3c": {
|
1571 |
-
"model_module": "@jupyter-widgets/controls",
|
1572 |
-
"model_module_version": "2.0.0",
|
1573 |
-
"model_name": "HTMLStyleModel",
|
1574 |
-
"state": {
|
1575 |
-
"description_width": "",
|
1576 |
-
"font_size": null,
|
1577 |
-
"text_color": null
|
1578 |
-
}
|
1579 |
-
},
|
1580 |
-
"8559eedee97d402a824f10eb01e6e6d0": {
|
1581 |
-
"model_module": "@jupyter-widgets/base",
|
1582 |
-
"model_module_version": "2.0.0",
|
1583 |
-
"model_name": "LayoutModel",
|
1584 |
-
"state": {}
|
1585 |
-
},
|
1586 |
-
"8705a5cdd2724831898adc95b6bac5ea": {
|
1587 |
-
"model_module": "@jupyter-widgets/base",
|
1588 |
-
"model_module_version": "2.0.0",
|
1589 |
-
"model_name": "LayoutModel",
|
1590 |
-
"state": {}
|
1591 |
-
},
|
1592 |
-
"89a35e74cfa549818bc55c018ec41b3c": {
|
1593 |
-
"model_module": "@jupyter-widgets/controls",
|
1594 |
-
"model_module_version": "2.0.0",
|
1595 |
-
"model_name": "ProgressStyleModel",
|
1596 |
-
"state": {
|
1597 |
-
"description_width": ""
|
1598 |
-
}
|
1599 |
-
},
|
1600 |
-
"8b1495c7cebe4bcf94888e3fe1e252e5": {
|
1601 |
-
"model_module": "@jupyter-widgets/controls",
|
1602 |
-
"model_module_version": "2.0.0",
|
1603 |
-
"model_name": "ProgressStyleModel",
|
1604 |
-
"state": {
|
1605 |
-
"description_width": ""
|
1606 |
-
}
|
1607 |
-
},
|
1608 |
-
"8b6f74e2cce947dbba9ffcdc474f7266": {
|
1609 |
-
"model_module": "@jupyter-widgets/base",
|
1610 |
-
"model_module_version": "2.0.0",
|
1611 |
-
"model_name": "LayoutModel",
|
1612 |
-
"state": {}
|
1613 |
-
},
|
1614 |
-
"8d94afbed6614ee0849652a2dad3f4a5": {
|
1615 |
-
"model_module": "@jupyter-widgets/controls",
|
1616 |
-
"model_module_version": "2.0.0",
|
1617 |
-
"model_name": "HTMLModel",
|
1618 |
-
"state": {
|
1619 |
-
"layout": "IPY_MODEL_fdbe092b69a8442c9181ff00d44002cf",
|
1620 |
-
"style": "IPY_MODEL_3b1bc675acca4abb806a7370b81a0f80",
|
1621 |
-
"value": "100%"
|
1622 |
-
}
|
1623 |
-
},
|
1624 |
-
"8f389f61d8574799be79de57b9da9c7f": {
|
1625 |
-
"model_module": "@jupyter-widgets/base",
|
1626 |
-
"model_module_version": "2.0.0",
|
1627 |
-
"model_name": "LayoutModel",
|
1628 |
-
"state": {}
|
1629 |
-
},
|
1630 |
-
"8f406ac3eb2b4167b88ce6fd524eff02": {
|
1631 |
-
"model_module": "@jupyter-widgets/base",
|
1632 |
-
"model_module_version": "2.0.0",
|
1633 |
-
"model_name": "LayoutModel",
|
1634 |
-
"state": {}
|
1635 |
-
},
|
1636 |
-
"8f54ebddba784e1b964877b447e6baa6": {
|
1637 |
-
"model_module": "@jupyter-widgets/controls",
|
1638 |
-
"model_module_version": "2.0.0",
|
1639 |
-
"model_name": "HTMLModel",
|
1640 |
-
"state": {
|
1641 |
-
"layout": "IPY_MODEL_f95e7c0d663b400fa37d209004544470",
|
1642 |
-
"style": "IPY_MODEL_959bb62649a2494686094b004961b7f0",
|
1643 |
-
"value": " 28/28 [00:00<00:00, 6803.41it/s]"
|
1644 |
-
}
|
1645 |
-
},
|
1646 |
-
"8fa672379414479daa47f8ed7f425379": {
|
1647 |
-
"model_module": "@jupyter-widgets/controls",
|
1648 |
-
"model_module_version": "2.0.0",
|
1649 |
-
"model_name": "HBoxModel",
|
1650 |
-
"state": {
|
1651 |
-
"children": [
|
1652 |
-
"IPY_MODEL_d0542643d2cb4139a75cbffaecf21757",
|
1653 |
-
"IPY_MODEL_bd99c05ddbbf44aab164b990128f3420",
|
1654 |
-
"IPY_MODEL_79cb3d063c1f4c30a06980674c9cb75b"
|
1655 |
-
],
|
1656 |
-
"layout": "IPY_MODEL_81c0b3cd02ed450b85da6325254eeeb7"
|
1657 |
-
}
|
1658 |
-
},
|
1659 |
-
"90daa5625664457289fda9a570b1399e": {
|
1660 |
-
"model_module": "@jupyter-widgets/controls",
|
1661 |
-
"model_module_version": "2.0.0",
|
1662 |
-
"model_name": "FloatProgressModel",
|
1663 |
-
"state": {
|
1664 |
-
"bar_style": "success",
|
1665 |
-
"layout": "IPY_MODEL_f6ecccb08b974283aa130f95026428cb",
|
1666 |
-
"max": 21,
|
1667 |
-
"style": "IPY_MODEL_71a242330b844e449df0f64b2f978db7",
|
1668 |
-
"value": 21
|
1669 |
-
}
|
1670 |
-
},
|
1671 |
-
"930a863ee24b4764937d73a0d0b35c5d": {
|
1672 |
-
"model_module": "@jupyter-widgets/controls",
|
1673 |
-
"model_module_version": "2.0.0",
|
1674 |
-
"model_name": "HTMLStyleModel",
|
1675 |
-
"state": {
|
1676 |
-
"description_width": "",
|
1677 |
-
"font_size": null,
|
1678 |
-
"text_color": null
|
1679 |
-
}
|
1680 |
-
},
|
1681 |
-
"933323d0cd844d7eae9b833c9bfcbc7a": {
|
1682 |
-
"model_module": "@jupyter-widgets/base",
|
1683 |
-
"model_module_version": "2.0.0",
|
1684 |
-
"model_name": "LayoutModel",
|
1685 |
-
"state": {}
|
1686 |
-
},
|
1687 |
-
"942351909d0847628fc9064e51e9efb7": {
|
1688 |
-
"model_module": "@jupyter-widgets/base",
|
1689 |
-
"model_module_version": "2.0.0",
|
1690 |
-
"model_name": "LayoutModel",
|
1691 |
-
"state": {}
|
1692 |
-
},
|
1693 |
-
"959bb62649a2494686094b004961b7f0": {
|
1694 |
-
"model_module": "@jupyter-widgets/controls",
|
1695 |
-
"model_module_version": "2.0.0",
|
1696 |
-
"model_name": "HTMLStyleModel",
|
1697 |
-
"state": {
|
1698 |
-
"description_width": "",
|
1699 |
-
"font_size": null,
|
1700 |
-
"text_color": null
|
1701 |
-
}
|
1702 |
-
},
|
1703 |
-
"959ee0a159654724a2145eb8c9d084b9": {
|
1704 |
-
"model_module": "@jupyter-widgets/controls",
|
1705 |
-
"model_module_version": "2.0.0",
|
1706 |
-
"model_name": "HTMLStyleModel",
|
1707 |
-
"state": {
|
1708 |
-
"description_width": "",
|
1709 |
-
"font_size": null,
|
1710 |
-
"text_color": null
|
1711 |
-
}
|
1712 |
-
},
|
1713 |
-
"95b437973d1f40acb2d0cfeba75893bc": {
|
1714 |
-
"model_module": "@jupyter-widgets/controls",
|
1715 |
-
"model_module_version": "2.0.0",
|
1716 |
-
"model_name": "HTMLStyleModel",
|
1717 |
-
"state": {
|
1718 |
-
"description_width": "",
|
1719 |
-
"font_size": null,
|
1720 |
-
"text_color": null
|
1721 |
-
}
|
1722 |
-
},
|
1723 |
-
"95bb6baeb60e4aeab8359879382c8e73": {
|
1724 |
-
"model_module": "@jupyter-widgets/base",
|
1725 |
-
"model_module_version": "2.0.0",
|
1726 |
-
"model_name": "LayoutModel",
|
1727 |
-
"state": {}
|
1728 |
-
},
|
1729 |
-
"98227771dc6444e6a6cf6cc3969ff139": {
|
1730 |
-
"model_module": "@jupyter-widgets/controls",
|
1731 |
-
"model_module_version": "2.0.0",
|
1732 |
-
"model_name": "HTMLStyleModel",
|
1733 |
-
"state": {
|
1734 |
-
"description_width": "",
|
1735 |
-
"font_size": null,
|
1736 |
-
"text_color": null
|
1737 |
-
}
|
1738 |
-
},
|
1739 |
-
"9ae97351248f4fcd9d7ffec6ef6fc66a": {
|
1740 |
-
"model_module": "@jupyter-widgets/controls",
|
1741 |
-
"model_module_version": "2.0.0",
|
1742 |
-
"model_name": "HBoxModel",
|
1743 |
-
"state": {
|
1744 |
-
"children": [
|
1745 |
-
"IPY_MODEL_7a5dabbab74a4cfdaebba473209a986e",
|
1746 |
-
"IPY_MODEL_019efd3abfaf449f90bc4e2419e97d84",
|
1747 |
-
"IPY_MODEL_b4b156c02f27467bbf66edea7995d021"
|
1748 |
-
],
|
1749 |
-
"layout": "IPY_MODEL_a3e101c64d4e403e9a8f0f30966d7528"
|
1750 |
-
}
|
1751 |
-
},
|
1752 |
-
"9bfc0fbbe907411682d8f6fbd3ff3b5c": {
|
1753 |
-
"model_module": "@jupyter-widgets/controls",
|
1754 |
-
"model_module_version": "2.0.0",
|
1755 |
-
"model_name": "ProgressStyleModel",
|
1756 |
-
"state": {
|
1757 |
-
"description_width": ""
|
1758 |
-
}
|
1759 |
-
},
|
1760 |
-
"9cafe2f9352e4142aaa6aae33fd113fe": {
|
1761 |
-
"model_module": "@jupyter-widgets/controls",
|
1762 |
-
"model_module_version": "2.0.0",
|
1763 |
-
"model_name": "HTMLModel",
|
1764 |
-
"state": {
|
1765 |
-
"layout": "IPY_MODEL_be2dbb8a876b475f81918be47258737a",
|
1766 |
-
"style": "IPY_MODEL_1b5af72876ef4a4ea02b42370d798860",
|
1767 |
-
"value": "100%"
|
1768 |
-
}
|
1769 |
-
},
|
1770 |
-
"9de20635d8a14299b600e5b74dc4ef3b": {
|
1771 |
-
"model_module": "@jupyter-widgets/controls",
|
1772 |
-
"model_module_version": "2.0.0",
|
1773 |
-
"model_name": "HTMLModel",
|
1774 |
-
"state": {
|
1775 |
-
"layout": "IPY_MODEL_57b5d706248f4a048a0840b13eab6933",
|
1776 |
-
"style": "IPY_MODEL_fce806ac73224b399c8724f8c7bc97c6",
|
1777 |
-
"value": "100%"
|
1778 |
-
}
|
1779 |
-
},
|
1780 |
-
"9ec6a648dab147cf9a909aadab83e895": {
|
1781 |
-
"model_module": "@jupyter-widgets/controls",
|
1782 |
-
"model_module_version": "2.0.0",
|
1783 |
-
"model_name": "HTMLModel",
|
1784 |
-
"state": {
|
1785 |
-
"layout": "IPY_MODEL_c0dc8ba9fc624f45a890b677a81527f7",
|
1786 |
-
"style": "IPY_MODEL_930a863ee24b4764937d73a0d0b35c5d",
|
1787 |
-
"value": " 30/30 [00:00<00:00, 7320.33it/s]"
|
1788 |
-
}
|
1789 |
-
},
|
1790 |
-
"a010f8415b9140fd9851f8976fa1b01a": {
|
1791 |
-
"model_module": "@jupyter-widgets/base",
|
1792 |
-
"model_module_version": "2.0.0",
|
1793 |
-
"model_name": "LayoutModel",
|
1794 |
-
"state": {}
|
1795 |
-
},
|
1796 |
-
"a0a18912938849328eaeed3a3b56e568": {
|
1797 |
-
"model_module": "@jupyter-widgets/controls",
|
1798 |
-
"model_module_version": "2.0.0",
|
1799 |
-
"model_name": "FloatProgressModel",
|
1800 |
-
"state": {
|
1801 |
-
"bar_style": "success",
|
1802 |
-
"layout": "IPY_MODEL_f03cd6a734044cd4a575a86860b7d027",
|
1803 |
-
"max": 21,
|
1804 |
-
"style": "IPY_MODEL_8b1495c7cebe4bcf94888e3fe1e252e5",
|
1805 |
-
"value": 21
|
1806 |
-
}
|
1807 |
-
},
|
1808 |
-
"a38e0664f6244c998579aa13a2ae30fe": {
|
1809 |
-
"model_module": "@jupyter-widgets/controls",
|
1810 |
-
"model_module_version": "2.0.0",
|
1811 |
-
"model_name": "HTMLModel",
|
1812 |
-
"state": {
|
1813 |
-
"layout": "IPY_MODEL_2f86f510a39f4e00be046ec19b1e43d8",
|
1814 |
-
"style": "IPY_MODEL_0cf24b3f362a423f9ec09410b2da7ab9",
|
1815 |
-
"value": " 16/16 [00:00<00:00, 3303.58it/s]"
|
1816 |
-
}
|
1817 |
-
},
|
1818 |
-
"a3e101c64d4e403e9a8f0f30966d7528": {
|
1819 |
-
"model_module": "@jupyter-widgets/base",
|
1820 |
-
"model_module_version": "2.0.0",
|
1821 |
-
"model_name": "LayoutModel",
|
1822 |
-
"state": {}
|
1823 |
-
},
|
1824 |
-
"a4a25dc88180447198f5a050be8405be": {
|
1825 |
-
"model_module": "@jupyter-widgets/base",
|
1826 |
-
"model_module_version": "2.0.0",
|
1827 |
-
"model_name": "LayoutModel",
|
1828 |
-
"state": {}
|
1829 |
-
},
|
1830 |
-
"a52771b4ba7a4d5dbc3fa3171beb8bc1": {
|
1831 |
-
"model_module": "@jupyter-widgets/base",
|
1832 |
-
"model_module_version": "2.0.0",
|
1833 |
-
"model_name": "LayoutModel",
|
1834 |
-
"state": {}
|
1835 |
-
},
|
1836 |
-
"a749689397134443af37b1ccfa7d8e22": {
|
1837 |
-
"model_module": "@jupyter-widgets/base",
|
1838 |
-
"model_module_version": "2.0.0",
|
1839 |
-
"model_name": "LayoutModel",
|
1840 |
-
"state": {}
|
1841 |
-
},
|
1842 |
-
"a754ff99a9e944f5bb77346fa5c7f123": {
|
1843 |
-
"model_module": "@jupyter-widgets/controls",
|
1844 |
-
"model_module_version": "2.0.0",
|
1845 |
-
"model_name": "HBoxModel",
|
1846 |
-
"state": {
|
1847 |
-
"children": [
|
1848 |
-
"IPY_MODEL_647972b9d960422db9c8fd95cdfe4535",
|
1849 |
-
"IPY_MODEL_712b5171e22e4d298a1f95da52aef92e",
|
1850 |
-
"IPY_MODEL_e3d303158a894b048f99bf8984a6692a"
|
1851 |
-
],
|
1852 |
-
"layout": "IPY_MODEL_e13edb15c632454c9310b053d1e7bbc0"
|
1853 |
-
}
|
1854 |
-
},
|
1855 |
-
"a7bc7584ec024e2caaefcd0e230540b6": {
|
1856 |
-
"model_module": "@jupyter-widgets/base",
|
1857 |
-
"model_module_version": "2.0.0",
|
1858 |
-
"model_name": "LayoutModel",
|
1859 |
-
"state": {}
|
1860 |
-
},
|
1861 |
-
"a7c3f7819f1b47eea4b42edaac6b1da6": {
|
1862 |
-
"model_module": "@jupyter-widgets/controls",
|
1863 |
-
"model_module_version": "2.0.0",
|
1864 |
-
"model_name": "HBoxModel",
|
1865 |
-
"state": {
|
1866 |
-
"children": [
|
1867 |
-
"IPY_MODEL_838579736d9843b1b8de4a1bb2a51e0e",
|
1868 |
-
"IPY_MODEL_0cb5caf71dc4422ba63c318519d70091",
|
1869 |
-
"IPY_MODEL_82be5b1d854048a7ab1139592f4b3b95"
|
1870 |
-
],
|
1871 |
-
"layout": "IPY_MODEL_5d5b786ef5824065bbaf0ade2f10ff97"
|
1872 |
-
}
|
1873 |
-
},
|
1874 |
-
"a828884198844f77817f20f9e1170c52": {
|
1875 |
-
"model_module": "@jupyter-widgets/controls",
|
1876 |
-
"model_module_version": "2.0.0",
|
1877 |
-
"model_name": "HTMLModel",
|
1878 |
-
"state": {
|
1879 |
-
"layout": "IPY_MODEL_b02bad64890347c19336c3d74e8a7fe4",
|
1880 |
-
"style": "IPY_MODEL_f0c93b13e434427898f8f87f8aa3ef25",
|
1881 |
-
"value": " 8/16 [00:26<00:00, 33.20it/s]"
|
1882 |
-
}
|
1883 |
-
},
|
1884 |
-
"a8c6939262b640b6b530e8c76959868f": {
|
1885 |
-
"model_module": "@jupyter-widgets/controls",
|
1886 |
-
"model_module_version": "2.0.0",
|
1887 |
-
"model_name": "HTMLModel",
|
1888 |
-
"state": {
|
1889 |
-
"layout": "IPY_MODEL_608808626eae492fa91b0d68f47dff04",
|
1890 |
-
"style": "IPY_MODEL_3dd67e3cdbfb43c2972f6cd90621d43d",
|
1891 |
-
"value": " 24/24 [00:00<00:00, 5641.30it/s]"
|
1892 |
-
}
|
1893 |
-
},
|
1894 |
-
"a8c890c01841474aa7bc13026223fb0f": {
|
1895 |
-
"model_module": "@jupyter-widgets/controls",
|
1896 |
-
"model_module_version": "2.0.0",
|
1897 |
-
"model_name": "ProgressStyleModel",
|
1898 |
-
"state": {
|
1899 |
-
"description_width": ""
|
1900 |
-
}
|
1901 |
-
},
|
1902 |
-
"aa81b75260164f4ea21dd43717be0ecd": {
|
1903 |
-
"model_module": "@jupyter-widgets/controls",
|
1904 |
-
"model_module_version": "2.0.0",
|
1905 |
-
"model_name": "ProgressStyleModel",
|
1906 |
-
"state": {
|
1907 |
-
"description_width": ""
|
1908 |
-
}
|
1909 |
-
},
|
1910 |
-
"af0f83766b264249b04fe32a9c278013": {
|
1911 |
-
"model_module": "@jupyter-widgets/controls",
|
1912 |
-
"model_module_version": "2.0.0",
|
1913 |
-
"model_name": "HTMLStyleModel",
|
1914 |
-
"state": {
|
1915 |
-
"description_width": "",
|
1916 |
-
"font_size": null,
|
1917 |
-
"text_color": null
|
1918 |
-
}
|
1919 |
-
},
|
1920 |
-
"af105a5a9c654af89e361df4a79a8b18": {
|
1921 |
-
"model_module": "@jupyter-widgets/controls",
|
1922 |
-
"model_module_version": "2.0.0",
|
1923 |
-
"model_name": "HTMLModel",
|
1924 |
-
"state": {
|
1925 |
-
"layout": "IPY_MODEL_064928844e9a4e7e922d917d81e44ff8",
|
1926 |
-
"style": "IPY_MODEL_56d7aab73ad546698d12e1190ebf89d3",
|
1927 |
-
"value": "100%"
|
1928 |
-
}
|
1929 |
-
},
|
1930 |
-
"afd1e2cdc57b4d4a98c877c4653e0172": {
|
1931 |
-
"model_module": "@jupyter-widgets/controls",
|
1932 |
-
"model_module_version": "2.0.0",
|
1933 |
-
"model_name": "HTMLStyleModel",
|
1934 |
-
"state": {
|
1935 |
-
"description_width": "",
|
1936 |
-
"font_size": null,
|
1937 |
-
"text_color": null
|
1938 |
-
}
|
1939 |
-
},
|
1940 |
-
"b02bad64890347c19336c3d74e8a7fe4": {
|
1941 |
-
"model_module": "@jupyter-widgets/base",
|
1942 |
-
"model_module_version": "2.0.0",
|
1943 |
-
"model_name": "LayoutModel",
|
1944 |
-
"state": {}
|
1945 |
-
},
|
1946 |
-
"b1a6d4e3356745ae958ff6446309c1d2": {
|
1947 |
-
"model_module": "@jupyter-widgets/base",
|
1948 |
-
"model_module_version": "2.0.0",
|
1949 |
-
"model_name": "LayoutModel",
|
1950 |
-
"state": {}
|
1951 |
-
},
|
1952 |
-
"b3141d40ec414bb7b062ec6a624a582b": {
|
1953 |
-
"model_module": "@jupyter-widgets/base",
|
1954 |
-
"model_module_version": "2.0.0",
|
1955 |
-
"model_name": "LayoutModel",
|
1956 |
-
"state": {}
|
1957 |
-
},
|
1958 |
-
"b4b156c02f27467bbf66edea7995d021": {
|
1959 |
-
"model_module": "@jupyter-widgets/controls",
|
1960 |
-
"model_module_version": "2.0.0",
|
1961 |
-
"model_name": "HTMLModel",
|
1962 |
-
"state": {
|
1963 |
-
"layout": "IPY_MODEL_f42a7f7b438a4d0094338b4f0ea4c693",
|
1964 |
-
"style": "IPY_MODEL_846febd8930547d7bf823150f4ffae3c",
|
1965 |
-
"value": " 22/22 [00:00<00:00, 4752.26it/s]"
|
1966 |
-
}
|
1967 |
-
},
|
1968 |
-
"b6a5756b0fa947afb2feeb22d11561fb": {
|
1969 |
-
"model_module": "@jupyter-widgets/controls",
|
1970 |
-
"model_module_version": "2.0.0",
|
1971 |
-
"model_name": "HBoxModel",
|
1972 |
-
"state": {
|
1973 |
-
"children": [
|
1974 |
-
"IPY_MODEL_3a82b029a4f7464d96fd6d533ddebfe4",
|
1975 |
-
"IPY_MODEL_05222193081f48b9be6bfc7d641ebb74",
|
1976 |
-
"IPY_MODEL_c14549c00be84f719516191adadd76af"
|
1977 |
-
],
|
1978 |
-
"layout": "IPY_MODEL_b998b321bb394e99b5da2b9e2c99fe36"
|
1979 |
-
}
|
1980 |
-
},
|
1981 |
-
"b85fc632bd20492bbeafd934d3fa780b": {
|
1982 |
-
"model_module": "@jupyter-widgets/controls",
|
1983 |
-
"model_module_version": "2.0.0",
|
1984 |
-
"model_name": "HTMLModel",
|
1985 |
-
"state": {
|
1986 |
-
"layout": "IPY_MODEL_e123b16936ce457f81878628d2d962a7",
|
1987 |
-
"style": "IPY_MODEL_ce9ffc395b094eaf9137ed0f69d4c526",
|
1988 |
-
"value": " 25/25 [00:00<00:00, 6465.11it/s]"
|
1989 |
-
}
|
1990 |
-
},
|
1991 |
-
"b966765fd8f74fe7914e11eec54a10b9": {
|
1992 |
-
"model_module": "@jupyter-widgets/controls",
|
1993 |
-
"model_module_version": "2.0.0",
|
1994 |
-
"model_name": "HBoxModel",
|
1995 |
-
"state": {
|
1996 |
-
"children": [
|
1997 |
-
"IPY_MODEL_4a33b3716b0941c3b586ee9b92fe0d58",
|
1998 |
-
"IPY_MODEL_0325659ee95e49a5b91b3b5d00ed7438",
|
1999 |
-
"IPY_MODEL_a828884198844f77817f20f9e1170c52"
|
2000 |
-
],
|
2001 |
-
"layout": "IPY_MODEL_f03f2a5969d14a1db67bbfe9d28fa7cc"
|
2002 |
-
}
|
2003 |
-
},
|
2004 |
-
"b98c2c2cc31f4c51931fe91d56435ca1": {
|
2005 |
-
"model_module": "@jupyter-widgets/controls",
|
2006 |
-
"model_module_version": "2.0.0",
|
2007 |
-
"model_name": "HBoxModel",
|
2008 |
-
"state": {
|
2009 |
-
"children": [
|
2010 |
-
"IPY_MODEL_8d94afbed6614ee0849652a2dad3f4a5",
|
2011 |
-
"IPY_MODEL_5cd1c2a9176243b89760cfdc3370846a",
|
2012 |
-
"IPY_MODEL_7b66585299d44751a2913a1311245c98"
|
2013 |
-
],
|
2014 |
-
"layout": "IPY_MODEL_b1a6d4e3356745ae958ff6446309c1d2"
|
2015 |
-
}
|
2016 |
-
},
|
2017 |
-
"b998b321bb394e99b5da2b9e2c99fe36": {
|
2018 |
-
"model_module": "@jupyter-widgets/base",
|
2019 |
-
"model_module_version": "2.0.0",
|
2020 |
-
"model_name": "LayoutModel",
|
2021 |
-
"state": {}
|
2022 |
-
},
|
2023 |
-
"b9c8d4aba50241e4873535d5253bc431": {
|
2024 |
-
"model_module": "@jupyter-widgets/controls",
|
2025 |
-
"model_module_version": "2.0.0",
|
2026 |
-
"model_name": "ProgressStyleModel",
|
2027 |
-
"state": {
|
2028 |
-
"description_width": ""
|
2029 |
-
}
|
2030 |
-
},
|
2031 |
-
"bd99c05ddbbf44aab164b990128f3420": {
|
2032 |
-
"model_module": "@jupyter-widgets/controls",
|
2033 |
-
"model_module_version": "2.0.0",
|
2034 |
-
"model_name": "FloatProgressModel",
|
2035 |
-
"state": {
|
2036 |
-
"bar_style": "success",
|
2037 |
-
"layout": "IPY_MODEL_8035368fdc6a49e1af25ca1b63934af5",
|
2038 |
-
"max": 22,
|
2039 |
-
"style": "IPY_MODEL_ddf9183cedc5426e889abf3bf4539d1e",
|
2040 |
-
"value": 22
|
2041 |
-
}
|
2042 |
-
},
|
2043 |
-
"bdcb506bd5304193898a0d69b84696b4": {
|
2044 |
-
"model_module": "@jupyter-widgets/controls",
|
2045 |
-
"model_module_version": "2.0.0",
|
2046 |
-
"model_name": "HTMLStyleModel",
|
2047 |
-
"state": {
|
2048 |
-
"description_width": "",
|
2049 |
-
"font_size": null,
|
2050 |
-
"text_color": null
|
2051 |
-
}
|
2052 |
-
},
|
2053 |
-
"be2dbb8a876b475f81918be47258737a": {
|
2054 |
-
"model_module": "@jupyter-widgets/base",
|
2055 |
-
"model_module_version": "2.0.0",
|
2056 |
-
"model_name": "LayoutModel",
|
2057 |
-
"state": {}
|
2058 |
-
},
|
2059 |
-
"c0467c436bdf4576b7072a658154b8eb": {
|
2060 |
-
"model_module": "@jupyter-widgets/controls",
|
2061 |
-
"model_module_version": "2.0.0",
|
2062 |
-
"model_name": "FloatProgressModel",
|
2063 |
-
"state": {
|
2064 |
-
"bar_style": "success",
|
2065 |
-
"layout": "IPY_MODEL_f156c7882d814602b5c577a8ef7eba94",
|
2066 |
-
"max": 28,
|
2067 |
-
"style": "IPY_MODEL_aa81b75260164f4ea21dd43717be0ecd",
|
2068 |
-
"value": 28
|
2069 |
-
}
|
2070 |
-
},
|
2071 |
-
"c080db3fe74a4fddad2f70f4c3b066c9": {
|
2072 |
-
"model_module": "@jupyter-widgets/controls",
|
2073 |
-
"model_module_version": "2.0.0",
|
2074 |
-
"model_name": "HTMLStyleModel",
|
2075 |
-
"state": {
|
2076 |
-
"description_width": "",
|
2077 |
-
"font_size": null,
|
2078 |
-
"text_color": null
|
2079 |
-
}
|
2080 |
-
},
|
2081 |
-
"c0dc8ba9fc624f45a890b677a81527f7": {
|
2082 |
-
"model_module": "@jupyter-widgets/base",
|
2083 |
-
"model_module_version": "2.0.0",
|
2084 |
-
"model_name": "LayoutModel",
|
2085 |
-
"state": {}
|
2086 |
-
},
|
2087 |
-
"c14549c00be84f719516191adadd76af": {
|
2088 |
-
"model_module": "@jupyter-widgets/controls",
|
2089 |
-
"model_module_version": "2.0.0",
|
2090 |
-
"model_name": "HTMLModel",
|
2091 |
-
"state": {
|
2092 |
-
"layout": "IPY_MODEL_60b697fdd03448cca047db6230e0f5a9",
|
2093 |
-
"style": "IPY_MODEL_afd1e2cdc57b4d4a98c877c4653e0172",
|
2094 |
-
"value": " 16/16 [00:00<00:00, 3209.72it/s]"
|
2095 |
-
}
|
2096 |
-
},
|
2097 |
-
"c3bd6287007c4a17a79275daa2b1ae2b": {
|
2098 |
-
"model_module": "@jupyter-widgets/controls",
|
2099 |
-
"model_module_version": "2.0.0",
|
2100 |
-
"model_name": "HTMLModel",
|
2101 |
-
"state": {
|
2102 |
-
"layout": "IPY_MODEL_467b0af2f3a14af783422d4c1ffe2e37",
|
2103 |
-
"style": "IPY_MODEL_771258f2a06841048273512fb2b92a74",
|
2104 |
-
"value": "100%"
|
2105 |
-
}
|
2106 |
-
},
|
2107 |
-
"c6c89e3d686147bfa3a0d64a53401913": {
|
2108 |
-
"model_module": "@jupyter-widgets/base",
|
2109 |
-
"model_module_version": "2.0.0",
|
2110 |
-
"model_name": "LayoutModel",
|
2111 |
-
"state": {}
|
2112 |
-
},
|
2113 |
-
"cba3272c3ca04cc6b44412aeb7b03d6e": {
|
2114 |
-
"model_module": "@jupyter-widgets/controls",
|
2115 |
-
"model_module_version": "2.0.0",
|
2116 |
-
"model_name": "HTMLStyleModel",
|
2117 |
-
"state": {
|
2118 |
-
"description_width": "",
|
2119 |
-
"font_size": null,
|
2120 |
-
"text_color": null
|
2121 |
-
}
|
2122 |
-
},
|
2123 |
-
"cd244af01c3e4707a75fa3427199f298": {
|
2124 |
-
"model_module": "@jupyter-widgets/controls",
|
2125 |
-
"model_module_version": "2.0.0",
|
2126 |
-
"model_name": "HTMLStyleModel",
|
2127 |
-
"state": {
|
2128 |
-
"description_width": "",
|
2129 |
-
"font_size": null,
|
2130 |
-
"text_color": null
|
2131 |
-
}
|
2132 |
-
},
|
2133 |
-
"ce9ffc395b094eaf9137ed0f69d4c526": {
|
2134 |
-
"model_module": "@jupyter-widgets/controls",
|
2135 |
-
"model_module_version": "2.0.0",
|
2136 |
-
"model_name": "HTMLStyleModel",
|
2137 |
-
"state": {
|
2138 |
-
"description_width": "",
|
2139 |
-
"font_size": null,
|
2140 |
-
"text_color": null
|
2141 |
-
}
|
2142 |
-
},
|
2143 |
-
"cf2b43396da34f09b4fa9163b0d268d7": {
|
2144 |
-
"model_module": "@jupyter-widgets/controls",
|
2145 |
-
"model_module_version": "2.0.0",
|
2146 |
-
"model_name": "HBoxModel",
|
2147 |
-
"state": {
|
2148 |
-
"children": [
|
2149 |
-
"IPY_MODEL_12b05791535a4222830d69a025e7c76f",
|
2150 |
-
"IPY_MODEL_404225735437479eb515d35385c64566",
|
2151 |
-
"IPY_MODEL_53a8a534e65c49ea95f28c4383c62e77"
|
2152 |
-
],
|
2153 |
-
"layout": "IPY_MODEL_e869b2e5fca443f2abce088213b5b3a3"
|
2154 |
-
}
|
2155 |
-
},
|
2156 |
-
"d0542643d2cb4139a75cbffaecf21757": {
|
2157 |
-
"model_module": "@jupyter-widgets/controls",
|
2158 |
-
"model_module_version": "2.0.0",
|
2159 |
-
"model_name": "HTMLModel",
|
2160 |
-
"state": {
|
2161 |
-
"layout": "IPY_MODEL_ee8d0ef1e6374952a0ab056b4fe78936",
|
2162 |
-
"style": "IPY_MODEL_f164dc377ac14ef88d42367a75820482",
|
2163 |
-
"value": "100%"
|
2164 |
-
}
|
2165 |
-
},
|
2166 |
-
"d20a28ec1fa5450aaa3116f57a4969f2": {
|
2167 |
-
"model_module": "@jupyter-widgets/base",
|
2168 |
-
"model_module_version": "2.0.0",
|
2169 |
-
"model_name": "LayoutModel",
|
2170 |
-
"state": {}
|
2171 |
-
},
|
2172 |
-
"d4eab8e28aea4048b6742decdc83b75c": {
|
2173 |
-
"model_module": "@jupyter-widgets/controls",
|
2174 |
-
"model_module_version": "2.0.0",
|
2175 |
-
"model_name": "ProgressStyleModel",
|
2176 |
-
"state": {
|
2177 |
-
"description_width": ""
|
2178 |
-
}
|
2179 |
-
},
|
2180 |
-
"d51f5d6d7b414d9e9fa1bdc59f1fed40": {
|
2181 |
-
"model_module": "@jupyter-widgets/base",
|
2182 |
-
"model_module_version": "2.0.0",
|
2183 |
-
"model_name": "LayoutModel",
|
2184 |
-
"state": {}
|
2185 |
-
},
|
2186 |
-
"d5af07ad383945ee95ff113055051f4f": {
|
2187 |
-
"model_module": "@jupyter-widgets/base",
|
2188 |
-
"model_module_version": "2.0.0",
|
2189 |
-
"model_name": "LayoutModel",
|
2190 |
-
"state": {}
|
2191 |
-
},
|
2192 |
-
"d81089cf727e4dc197b8556d832ad319": {
|
2193 |
-
"model_module": "@jupyter-widgets/base",
|
2194 |
-
"model_module_version": "2.0.0",
|
2195 |
-
"model_name": "LayoutModel",
|
2196 |
-
"state": {}
|
2197 |
-
},
|
2198 |
-
"d854a6aa89aa4b0b85b74e6571610fa5": {
|
2199 |
-
"model_module": "@jupyter-widgets/base",
|
2200 |
-
"model_module_version": "2.0.0",
|
2201 |
-
"model_name": "LayoutModel",
|
2202 |
-
"state": {}
|
2203 |
-
},
|
2204 |
-
"daf6d481c6ed4a13895c775d822d0242": {
|
2205 |
-
"model_module": "@jupyter-widgets/controls",
|
2206 |
-
"model_module_version": "2.0.0",
|
2207 |
-
"model_name": "FloatProgressModel",
|
2208 |
-
"state": {
|
2209 |
-
"bar_style": "success",
|
2210 |
-
"layout": "IPY_MODEL_942351909d0847628fc9064e51e9efb7",
|
2211 |
-
"max": 30,
|
2212 |
-
"style": "IPY_MODEL_532d767b9d3b4a11a17dce8f1688ed9b",
|
2213 |
-
"value": 30
|
2214 |
-
}
|
2215 |
-
},
|
2216 |
-
"ddf9183cedc5426e889abf3bf4539d1e": {
|
2217 |
-
"model_module": "@jupyter-widgets/controls",
|
2218 |
-
"model_module_version": "2.0.0",
|
2219 |
-
"model_name": "ProgressStyleModel",
|
2220 |
-
"state": {
|
2221 |
-
"description_width": ""
|
2222 |
-
}
|
2223 |
-
},
|
2224 |
-
"dfc93a33fc944a93a224115c6b51164d": {
|
2225 |
-
"model_module": "@jupyter-widgets/controls",
|
2226 |
-
"model_module_version": "2.0.0",
|
2227 |
-
"model_name": "HTMLStyleModel",
|
2228 |
-
"state": {
|
2229 |
-
"description_width": "",
|
2230 |
-
"font_size": null,
|
2231 |
-
"text_color": null
|
2232 |
-
}
|
2233 |
-
},
|
2234 |
-
"e09a0c50b3bb4e2ebaba70054dcbbedb": {
|
2235 |
-
"model_module": "@jupyter-widgets/controls",
|
2236 |
-
"model_module_version": "2.0.0",
|
2237 |
-
"model_name": "ProgressStyleModel",
|
2238 |
-
"state": {
|
2239 |
-
"description_width": ""
|
2240 |
-
}
|
2241 |
-
},
|
2242 |
-
"e123b16936ce457f81878628d2d962a7": {
|
2243 |
-
"model_module": "@jupyter-widgets/base",
|
2244 |
-
"model_module_version": "2.0.0",
|
2245 |
-
"model_name": "LayoutModel",
|
2246 |
-
"state": {}
|
2247 |
-
},
|
2248 |
-
"e13edb15c632454c9310b053d1e7bbc0": {
|
2249 |
-
"model_module": "@jupyter-widgets/base",
|
2250 |
-
"model_module_version": "2.0.0",
|
2251 |
-
"model_name": "LayoutModel",
|
2252 |
-
"state": {}
|
2253 |
-
},
|
2254 |
-
"e172dd2b27b9474fafa071ebd346e6fd": {
|
2255 |
-
"model_module": "@jupyter-widgets/base",
|
2256 |
-
"model_module_version": "2.0.0",
|
2257 |
-
"model_name": "LayoutModel",
|
2258 |
-
"state": {}
|
2259 |
-
},
|
2260 |
-
"e177331cfd7d4d868394e0e7cc0c4f76": {
|
2261 |
-
"model_module": "@jupyter-widgets/controls",
|
2262 |
-
"model_module_version": "2.0.0",
|
2263 |
-
"model_name": "HBoxModel",
|
2264 |
-
"state": {
|
2265 |
-
"children": [
|
2266 |
-
"IPY_MODEL_c3bd6287007c4a17a79275daa2b1ae2b",
|
2267 |
-
"IPY_MODEL_175f4a5c23fd4e33839d75ea09bd0b63",
|
2268 |
-
"IPY_MODEL_4dae4e3e455443b8a5ea8bb0e38abc38"
|
2269 |
-
],
|
2270 |
-
"layout": "IPY_MODEL_8f406ac3eb2b4167b88ce6fd524eff02"
|
2271 |
-
}
|
2272 |
-
},
|
2273 |
-
"e2a61ed939434f548f885aeed891b133": {
|
2274 |
-
"model_module": "@jupyter-widgets/controls",
|
2275 |
-
"model_module_version": "2.0.0",
|
2276 |
-
"model_name": "HBoxModel",
|
2277 |
-
"state": {
|
2278 |
-
"children": [
|
2279 |
-
"IPY_MODEL_e70e8ca28423417ea0a6c2f799216e83",
|
2280 |
-
"IPY_MODEL_05ed74a6ba944337bebcb2fac08c00de",
|
2281 |
-
"IPY_MODEL_f3243b172bfd416289669c713857c8f2"
|
2282 |
-
],
|
2283 |
-
"layout": "IPY_MODEL_7069efff195840d2b4008ed452839775"
|
2284 |
-
}
|
2285 |
-
},
|
2286 |
-
"e3d303158a894b048f99bf8984a6692a": {
|
2287 |
-
"model_module": "@jupyter-widgets/controls",
|
2288 |
-
"model_module_version": "2.0.0",
|
2289 |
-
"model_name": "HTMLModel",
|
2290 |
-
"state": {
|
2291 |
-
"layout": "IPY_MODEL_a749689397134443af37b1ccfa7d8e22",
|
2292 |
-
"style": "IPY_MODEL_3f0ac448c3c34e0d8b123118eb7933aa",
|
2293 |
-
"value": " 19/19 [00:00<00:00, 4071.10it/s]"
|
2294 |
-
}
|
2295 |
-
},
|
2296 |
-
"e4de6f7c9c8c4afdb2c3bdeb5a1da73e": {
|
2297 |
-
"model_module": "@jupyter-widgets/controls",
|
2298 |
-
"model_module_version": "2.0.0",
|
2299 |
-
"model_name": "HTMLStyleModel",
|
2300 |
-
"state": {
|
2301 |
-
"description_width": "",
|
2302 |
-
"font_size": null,
|
2303 |
-
"text_color": null
|
2304 |
-
}
|
2305 |
-
},
|
2306 |
-
"e70e8ca28423417ea0a6c2f799216e83": {
|
2307 |
-
"model_module": "@jupyter-widgets/controls",
|
2308 |
-
"model_module_version": "2.0.0",
|
2309 |
-
"model_name": "HTMLModel",
|
2310 |
-
"state": {
|
2311 |
-
"layout": "IPY_MODEL_c6c89e3d686147bfa3a0d64a53401913",
|
2312 |
-
"style": "IPY_MODEL_7a95a0bbf7cb44e7a52c9a15f1931e77",
|
2313 |
-
"value": " 10%"
|
2314 |
-
}
|
2315 |
-
},
|
2316 |
-
"e7a0e0cbfdb44f8ebaaab4898eb7e5bb": {
|
2317 |
-
"model_module": "@jupyter-widgets/controls",
|
2318 |
-
"model_module_version": "2.0.0",
|
2319 |
-
"model_name": "HTMLStyleModel",
|
2320 |
-
"state": {
|
2321 |
-
"description_width": "",
|
2322 |
-
"font_size": null,
|
2323 |
-
"text_color": null
|
2324 |
-
}
|
2325 |
-
},
|
2326 |
-
"e869b2e5fca443f2abce088213b5b3a3": {
|
2327 |
-
"model_module": "@jupyter-widgets/base",
|
2328 |
-
"model_module_version": "2.0.0",
|
2329 |
-
"model_name": "LayoutModel",
|
2330 |
-
"state": {}
|
2331 |
-
},
|
2332 |
-
"e8bc898cab2647f99dc9e0276a4c5802": {
|
2333 |
-
"model_module": "@jupyter-widgets/controls",
|
2334 |
-
"model_module_version": "2.0.0",
|
2335 |
-
"model_name": "HTMLStyleModel",
|
2336 |
-
"state": {
|
2337 |
-
"description_width": "",
|
2338 |
-
"font_size": null,
|
2339 |
-
"text_color": null
|
2340 |
-
}
|
2341 |
-
},
|
2342 |
-
"ebbe757b21d34be8b2a456a90366d590": {
|
2343 |
-
"model_module": "@jupyter-widgets/controls",
|
2344 |
-
"model_module_version": "2.0.0",
|
2345 |
-
"model_name": "HTMLStyleModel",
|
2346 |
-
"state": {
|
2347 |
-
"description_width": "",
|
2348 |
-
"font_size": null,
|
2349 |
-
"text_color": null
|
2350 |
-
}
|
2351 |
-
},
|
2352 |
-
"ed014a43707a4ac099f4d3f135b9ae80": {
|
2353 |
-
"model_module": "@jupyter-widgets/base",
|
2354 |
-
"model_module_version": "2.0.0",
|
2355 |
-
"model_name": "LayoutModel",
|
2356 |
-
"state": {}
|
2357 |
-
},
|
2358 |
-
"ee8d0ef1e6374952a0ab056b4fe78936": {
|
2359 |
-
"model_module": "@jupyter-widgets/base",
|
2360 |
-
"model_module_version": "2.0.0",
|
2361 |
-
"model_name": "LayoutModel",
|
2362 |
-
"state": {}
|
2363 |
-
},
|
2364 |
-
"f03cd6a734044cd4a575a86860b7d027": {
|
2365 |
-
"model_module": "@jupyter-widgets/base",
|
2366 |
-
"model_module_version": "2.0.0",
|
2367 |
-
"model_name": "LayoutModel",
|
2368 |
-
"state": {}
|
2369 |
-
},
|
2370 |
-
"f03f2a5969d14a1db67bbfe9d28fa7cc": {
|
2371 |
-
"model_module": "@jupyter-widgets/base",
|
2372 |
-
"model_module_version": "2.0.0",
|
2373 |
-
"model_name": "LayoutModel",
|
2374 |
-
"state": {}
|
2375 |
-
},
|
2376 |
-
"f0c93b13e434427898f8f87f8aa3ef25": {
|
2377 |
-
"model_module": "@jupyter-widgets/controls",
|
2378 |
-
"model_module_version": "2.0.0",
|
2379 |
-
"model_name": "HTMLStyleModel",
|
2380 |
-
"state": {
|
2381 |
-
"description_width": "",
|
2382 |
-
"font_size": null,
|
2383 |
-
"text_color": null
|
2384 |
-
}
|
2385 |
-
},
|
2386 |
-
"f156c7882d814602b5c577a8ef7eba94": {
|
2387 |
-
"model_module": "@jupyter-widgets/base",
|
2388 |
-
"model_module_version": "2.0.0",
|
2389 |
-
"model_name": "LayoutModel",
|
2390 |
-
"state": {}
|
2391 |
-
},
|
2392 |
-
"f164dc377ac14ef88d42367a75820482": {
|
2393 |
-
"model_module": "@jupyter-widgets/controls",
|
2394 |
-
"model_module_version": "2.0.0",
|
2395 |
-
"model_name": "HTMLStyleModel",
|
2396 |
-
"state": {
|
2397 |
-
"description_width": "",
|
2398 |
-
"font_size": null,
|
2399 |
-
"text_color": null
|
2400 |
-
}
|
2401 |
-
},
|
2402 |
-
"f3243b172bfd416289669c713857c8f2": {
|
2403 |
-
"model_module": "@jupyter-widgets/controls",
|
2404 |
-
"model_module_version": "2.0.0",
|
2405 |
-
"model_name": "HTMLModel",
|
2406 |
-
"state": {
|
2407 |
-
"layout": "IPY_MODEL_63083946b8b84267b420430d950b1930",
|
2408 |
-
"style": "IPY_MODEL_633906c1efea4d78b6d3c80c8dabe668",
|
2409 |
-
"value": " 3/29 [00:25<03:43, 8.59s/it]"
|
2410 |
-
}
|
2411 |
-
},
|
2412 |
-
"f3e63e0a4fcb4754b1fc9c89b86f035d": {
|
2413 |
-
"model_module": "@jupyter-widgets/controls",
|
2414 |
-
"model_module_version": "2.0.0",
|
2415 |
-
"model_name": "HBoxModel",
|
2416 |
-
"state": {
|
2417 |
-
"children": [
|
2418 |
-
"IPY_MODEL_201b9069e1134d5fa0cea2fa6270c27f",
|
2419 |
-
"IPY_MODEL_70aa20bc35f54b12b7b7dd52064adaa4",
|
2420 |
-
"IPY_MODEL_b85fc632bd20492bbeafd934d3fa780b"
|
2421 |
-
],
|
2422 |
-
"layout": "IPY_MODEL_f54524d6990e4f849d43017c03f2dee4"
|
2423 |
-
}
|
2424 |
-
},
|
2425 |
-
"f42a7f7b438a4d0094338b4f0ea4c693": {
|
2426 |
-
"model_module": "@jupyter-widgets/base",
|
2427 |
-
"model_module_version": "2.0.0",
|
2428 |
-
"model_name": "LayoutModel",
|
2429 |
-
"state": {}
|
2430 |
-
},
|
2431 |
-
"f54524d6990e4f849d43017c03f2dee4": {
|
2432 |
-
"model_module": "@jupyter-widgets/base",
|
2433 |
-
"model_module_version": "2.0.0",
|
2434 |
-
"model_name": "LayoutModel",
|
2435 |
-
"state": {}
|
2436 |
-
},
|
2437 |
-
"f6ecccb08b974283aa130f95026428cb": {
|
2438 |
-
"model_module": "@jupyter-widgets/base",
|
2439 |
-
"model_module_version": "2.0.0",
|
2440 |
-
"model_name": "LayoutModel",
|
2441 |
-
"state": {}
|
2442 |
-
},
|
2443 |
-
"f95e7c0d663b400fa37d209004544470": {
|
2444 |
-
"model_module": "@jupyter-widgets/base",
|
2445 |
-
"model_module_version": "2.0.0",
|
2446 |
-
"model_name": "LayoutModel",
|
2447 |
-
"state": {}
|
2448 |
-
},
|
2449 |
-
"f9984d78b7ec4000a2baf41d7d4ff9d8": {
|
2450 |
-
"model_module": "@jupyter-widgets/controls",
|
2451 |
-
"model_module_version": "2.0.0",
|
2452 |
-
"model_name": "HBoxModel",
|
2453 |
-
"state": {
|
2454 |
-
"children": [
|
2455 |
-
"IPY_MODEL_56acbad3ec18465389c8084e847b5d1e",
|
2456 |
-
"IPY_MODEL_c0467c436bdf4576b7072a658154b8eb",
|
2457 |
-
"IPY_MODEL_52d1c4450d2c482a81be7167674e59fd"
|
2458 |
-
],
|
2459 |
-
"layout": "IPY_MODEL_95bb6baeb60e4aeab8359879382c8e73"
|
2460 |
-
}
|
2461 |
-
},
|
2462 |
-
"fce806ac73224b399c8724f8c7bc97c6": {
|
2463 |
-
"model_module": "@jupyter-widgets/controls",
|
2464 |
-
"model_module_version": "2.0.0",
|
2465 |
-
"model_name": "HTMLStyleModel",
|
2466 |
-
"state": {
|
2467 |
-
"description_width": "",
|
2468 |
-
"font_size": null,
|
2469 |
-
"text_color": null
|
2470 |
-
}
|
2471 |
-
},
|
2472 |
-
"fdbe092b69a8442c9181ff00d44002cf": {
|
2473 |
-
"model_module": "@jupyter-widgets/base",
|
2474 |
"model_module_version": "2.0.0",
|
2475 |
"model_name": "LayoutModel",
|
2476 |
"state": {}
|
2477 |
},
|
2478 |
-
"
|
2479 |
-
"model_module": "@jupyter-widgets/controls",
|
2480 |
-
"model_module_version": "2.0.0",
|
2481 |
-
"model_name": "HTMLModel",
|
2482 |
-
"state": {
|
2483 |
-
"layout": "IPY_MODEL_25dd92e9748b478586a15a3b2115b106",
|
2484 |
-
"style": "IPY_MODEL_675e3757f1c448b6808ee2bcef0674af",
|
2485 |
-
"value": " 21/21 [00:00<00:00, 4935.03it/s]"
|
2486 |
-
}
|
2487 |
-
},
|
2488 |
-
"fe5718022ac24b5b9a0955ca9c48dad1": {
|
2489 |
"model_module": "@jupyter-widgets/controls",
|
2490 |
"model_module_version": "2.0.0",
|
2491 |
"model_name": "HTMLStyleModel",
|
|
|
38 |
{
|
39 |
"data": {
|
40 |
"application/vnd.jupyter.widget-view+json": {
|
41 |
+
"model_id": "b30d4d05feb144d9aaf062206dabc9c6",
|
42 |
"version_major": 2,
|
43 |
"version_minor": 0
|
44 |
},
|
|
|
59 |
{
|
60 |
"data": {
|
61 |
"application/vnd.jupyter.widget-view+json": {
|
62 |
+
"model_id": "c69a861cba7040c494f062bea15216be",
|
63 |
"version_major": 2,
|
64 |
"version_minor": 0
|
65 |
},
|
|
|
80 |
{
|
81 |
"data": {
|
82 |
"application/vnd.jupyter.widget-view+json": {
|
83 |
+
"model_id": "fe1c1d0c26394a54a3b734458f93f534",
|
84 |
"version_major": 2,
|
85 |
"version_minor": 0
|
86 |
},
|
|
|
95 |
"name": "stdout",
|
96 |
"output_type": "stream",
|
97 |
"text": [
|
98 |
+
"Atoms(symbols='N2', pbc=True, cell=[15.0, 15.001, 15.002])\n"
|
99 |
]
|
100 |
},
|
101 |
{
|
102 |
"data": {
|
103 |
"application/vnd.jupyter.widget-view+json": {
|
104 |
+
"model_id": "1a651919fea245d1a1461adeccbd9941",
|
105 |
"version_major": 2,
|
106 |
"version_minor": 0
|
107 |
},
|
|
|
116 |
"name": "stdout",
|
117 |
"output_type": "stream",
|
118 |
"text": [
|
119 |
+
"Atoms(symbols='O2', pbc=True, cell=[15.0, 15.001, 15.002])\n"
|
120 |
]
|
121 |
},
|
122 |
{
|
123 |
"data": {
|
124 |
"application/vnd.jupyter.widget-view+json": {
|
125 |
+
"model_id": "6ef80d3919514ac9828098f51d64b2c3",
|
126 |
"version_major": 2,
|
127 |
"version_minor": 0
|
128 |
},
|
|
|
143 |
{
|
144 |
"data": {
|
145 |
"application/vnd.jupyter.widget-view+json": {
|
146 |
+
"model_id": "399dc0992b304fd7a36f47864840123f",
|
147 |
"version_major": 2,
|
148 |
"version_minor": 0
|
149 |
},
|
|
|
164 |
{
|
165 |
"data": {
|
166 |
"application/vnd.jupyter.widget-view+json": {
|
167 |
+
"model_id": "2f23732a547d42df82baa6b386d371cc",
|
168 |
"version_major": 2,
|
169 |
"version_minor": 0
|
170 |
},
|
|
|
185 |
{
|
186 |
"data": {
|
187 |
"application/vnd.jupyter.widget-view+json": {
|
188 |
+
"model_id": "1c9ad8492a534483b249010062c128c4",
|
189 |
"version_major": 2,
|
190 |
"version_minor": 0
|
191 |
},
|
|
|
200 |
"name": "stdout",
|
201 |
"output_type": "stream",
|
202 |
"text": [
|
203 |
+
"Atoms(symbols='Na2', pbc=True, cell=[15.5, 15.501, 15.502])\n"
|
204 |
]
|
205 |
},
|
206 |
{
|
207 |
"data": {
|
208 |
"application/vnd.jupyter.widget-view+json": {
|
209 |
+
"model_id": "068f21ad734e411c9bfae2f5fd059662",
|
210 |
"version_major": 2,
|
211 |
"version_minor": 0
|
212 |
},
|
|
|
221 |
"name": "stdout",
|
222 |
"output_type": "stream",
|
223 |
"text": [
|
224 |
+
"Did not converge! See text output for help.\n",
|
225 |
"Atoms(symbols='Cr2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002], initial_magmoms=..., calculator=SinglePointCalculator(...))\n"
|
226 |
]
|
227 |
},
|
228 |
{
|
229 |
"data": {
|
230 |
"application/vnd.jupyter.widget-view+json": {
|
231 |
+
"model_id": "99d0786dd9f54142ba22c698b14418fe",
|
232 |
"version_major": 2,
|
233 |
"version_minor": 0
|
234 |
},
|
|
|
322 |
" restart_fpath = out_dir / 'restart.gpw'\n",
|
323 |
"\n",
|
324 |
" calc = GPAW(\n",
|
325 |
+
" mode=PW(2000),\n",
|
326 |
" xc='PBE',\n",
|
327 |
" spinpol=True,\n",
|
328 |
" # basis='dzp'\n",
|
|
|
331 |
" # nbands=0 if element.is_noble_gas else '110%',\n",
|
332 |
" hund=False,\n",
|
333 |
" mixer=MixerDif(0.01, 1, 1) if element.is_transition_metal else MixerDif(0.25, 3, 10),\n",
|
|
|
|
|
|
|
334 |
" # eigensolver='rmm-diis', #Davidson(3), # This solver can parallelize over bands Davidson(3), #\n",
|
335 |
+
" occupations=FermiDirac(0.2, fixmagmom=False), # if not element.is_metal else FermiDirac(0.2, fixmagmom=False),\n",
|
|
|
336 |
" # eigensolver=LCAOETDM(),\n",
|
337 |
" # # searchdir_algo={'name': 'l-bfgs-p', 'memory': 10}),\n",
|
338 |
" # occupations={'name': 'fixed-uniform'},\n",
|
|
|
346 |
" 'energy': 5e-4,\n",
|
347 |
" # 'bands': 4\n",
|
348 |
" },\n",
|
|
|
349 |
" # {'energy': 0.0005, # eV / electron\n",
|
350 |
" # 'density': 1.0e-4, # electrons / electron\n",
|
351 |
" # 'eigenstates': 4.0e-8, # eV^2 / electron\n",
|
352 |
" # 'bands': 'occupied'},\n",
|
|
|
|
|
|
|
353 |
" # parallel={'gpu': True},\n",
|
354 |
" setups='paw' \n",
|
|
|
355 |
" )\n",
|
356 |
" # calc = GPAW(\n",
|
357 |
" # mode='pw', #PW(1500),\n",
|
|
|
416 |
"\n",
|
417 |
" if fm_energy <= afm_energy:\n",
|
418 |
" magmoms = fm_magmoms\n",
|
419 |
+
" atoms.set_initial_magnetic_moments(magmoms) \n",
|
420 |
" # shutil.move(out_dir / \"WAVECAR_FM\", out_dir / \"WAVECAR\") \n",
|
421 |
" else:\n",
|
422 |
" magmoms = afm_magmoms\n",
|
423 |
+
" atoms.set_initial_magnetic_moments(magmoms)\n",
|
424 |
" # shutil.move(out_dir / \"WAVECAR_AFM\", out_dir / \"WAVECAR\")\n",
|
425 |
"\n",
|
426 |
+
"# if i > 0: \n",
|
427 |
+
"# magmoms = atoms.get_magnetic_moments()\n",
|
428 |
"\n",
|
429 |
+
"# atoms.set_initial_magnetic_moments(magmoms)\n",
|
430 |
" # m = min(abs(magmoms[0])*1.2, m)\n",
|
431 |
" # magmoms = magmoms*m/np.abs(magmoms)\n",
|
432 |
"\n",
|
|
|
443 |
},
|
444 |
{
|
445 |
"cell_type": "code",
|
446 |
+
"execution_count": null,
|
447 |
"id": "06118461-8db9-49f0-8aae-2150146ab9b5",
|
448 |
"metadata": {
|
449 |
"tags": []
|
450 |
},
|
451 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
"source": [
|
453 |
"!echo $GPAW_NEW"
|
454 |
]
|
|
|
542 |
"widgets": {
|
543 |
"application/vnd.jupyter.widget-state+json": {
|
544 |
"state": {
|
545 |
+
"08bb114ae5674fd1af84c459d1407555": {
|
546 |
"model_module": "@jupyter-widgets/controls",
|
547 |
"model_module_version": "2.0.0",
|
548 |
+
"model_name": "HTMLModel",
|
549 |
"state": {
|
550 |
+
"layout": "IPY_MODEL_43a625312a50485faa2f10807c19a5c3",
|
551 |
+
"style": "IPY_MODEL_7d3e41a01d7f4a3f997b510ad7be62c7",
|
552 |
+
"value": " 0%"
|
|
|
|
|
553 |
}
|
554 |
},
|
555 |
+
"16d09a1085ce4b7c94d3c9838e7b6047": {
|
556 |
"model_module": "@jupyter-widgets/controls",
|
557 |
"model_module_version": "2.0.0",
|
558 |
+
"model_name": "ProgressStyleModel",
|
559 |
"state": {
|
560 |
+
"description_width": ""
|
|
|
|
|
|
|
|
|
561 |
}
|
562 |
},
|
563 |
+
"378fd424e42c4a02a76319ddf1f4773e": {
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
"model_module": "@jupyter-widgets/controls",
|
565 |
"model_module_version": "2.0.0",
|
566 |
+
"model_name": "HTMLModel",
|
567 |
"state": {
|
568 |
+
"layout": "IPY_MODEL_f6e60cbeb3a246a189de60bfddf1ea24",
|
569 |
+
"style": "IPY_MODEL_6deae131201c46af8be20e2129d17176",
|
570 |
+
"value": " 0/28 [00:00<?, ?it/s]"
|
|
|
|
|
|
|
571 |
}
|
572 |
},
|
573 |
+
"398c7fc38b92419a956e17bb3f69f61f": {
|
574 |
"model_module": "@jupyter-widgets/controls",
|
575 |
"model_module_version": "2.0.0",
|
576 |
"model_name": "HBoxModel",
|
577 |
"state": {
|
578 |
"children": [
|
579 |
+
"IPY_MODEL_9dbfeae19c864b1cb2df6c4b39bfa9c9",
|
580 |
+
"IPY_MODEL_3bb3f03b83284c0bbdc316fdc313384f",
|
581 |
+
"IPY_MODEL_378fd424e42c4a02a76319ddf1f4773e"
|
582 |
],
|
583 |
+
"layout": "IPY_MODEL_cd8b7bf098b84df197fcd498084e5afd"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
}
|
585 |
},
|
586 |
+
"3bb3f03b83284c0bbdc316fdc313384f": {
|
587 |
"model_module": "@jupyter-widgets/controls",
|
588 |
"model_module_version": "2.0.0",
|
589 |
"model_name": "FloatProgressModel",
|
590 |
"state": {
|
591 |
+
"layout": "IPY_MODEL_c98b44b3cdfc4d1180786cf11521d9d3",
|
592 |
+
"max": 28,
|
593 |
+
"style": "IPY_MODEL_787e84a3b17d4f8ba132db1a5ed466b3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
}
|
595 |
},
|
596 |
+
"43a625312a50485faa2f10807c19a5c3": {
|
597 |
"model_module": "@jupyter-widgets/base",
|
598 |
"model_module_version": "2.0.0",
|
599 |
"model_name": "LayoutModel",
|
600 |
"state": {}
|
601 |
},
|
602 |
+
"43e1040562d1439b801ecfedf5035aee": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
"model_module": "@jupyter-widgets/controls",
|
604 |
"model_module_version": "2.0.0",
|
605 |
+
"model_name": "HTMLStyleModel",
|
606 |
"state": {
|
607 |
+
"description_width": "",
|
608 |
+
"font_size": null,
|
609 |
+
"text_color": null
|
610 |
}
|
611 |
},
|
612 |
+
"45675de1547d489d9f935cb432b4fadf": {
|
613 |
"model_module": "@jupyter-widgets/controls",
|
614 |
"model_module_version": "2.0.0",
|
615 |
"model_name": "FloatProgressModel",
|
616 |
"state": {
|
617 |
+
"bar_style": "danger",
|
618 |
+
"layout": "IPY_MODEL_4d3c75a82de345ad9d01ef5507126023",
|
619 |
+
"max": 29,
|
620 |
+
"style": "IPY_MODEL_79037b808e294df393a993227a4ff8c3"
|
|
|
621 |
}
|
622 |
},
|
623 |
+
"4cd7b5fa3e214f74a66ed4d99d5025a4": {
|
624 |
"model_module": "@jupyter-widgets/controls",
|
625 |
"model_module_version": "2.0.0",
|
626 |
+
"model_name": "HBoxModel",
|
627 |
"state": {
|
628 |
+
"children": [
|
629 |
+
"IPY_MODEL_67252eabaa4348d8a3fd4cf0c7653e97",
|
630 |
+
"IPY_MODEL_988805506e274daaa19a059f19fb51b8",
|
631 |
+
"IPY_MODEL_a0e545db7c0b4b8289e72e53c19fdc3c"
|
632 |
+
],
|
633 |
+
"layout": "IPY_MODEL_b75fa1272c794c1cbb66cb39d61a5375"
|
634 |
}
|
635 |
},
|
636 |
+
"4d3c75a82de345ad9d01ef5507126023": {
|
637 |
"model_module": "@jupyter-widgets/base",
|
638 |
"model_module_version": "2.0.0",
|
639 |
"model_name": "LayoutModel",
|
640 |
"state": {}
|
641 |
},
|
642 |
+
"51a4c221d21544bdb91e98fe6e10dd43": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
"model_module": "@jupyter-widgets/controls",
|
644 |
"model_module_version": "2.0.0",
|
645 |
"model_name": "HTMLStyleModel",
|
|
|
649 |
"text_color": null
|
650 |
}
|
651 |
},
|
652 |
+
"67252eabaa4348d8a3fd4cf0c7653e97": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
"model_module": "@jupyter-widgets/controls",
|
654 |
"model_module_version": "2.0.0",
|
655 |
"model_name": "HTMLModel",
|
656 |
"state": {
|
657 |
+
"layout": "IPY_MODEL_b624b02837f44ae78ec7ecd29ed0f73b",
|
658 |
+
"style": "IPY_MODEL_51a4c221d21544bdb91e98fe6e10dd43",
|
659 |
+
"value": "100%"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
}
|
661 |
},
|
662 |
+
"6deae131201c46af8be20e2129d17176": {
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
"model_module": "@jupyter-widgets/controls",
|
664 |
"model_module_version": "2.0.0",
|
665 |
"model_name": "HTMLStyleModel",
|
|
|
669 |
"text_color": null
|
670 |
}
|
671 |
},
|
672 |
+
"787e84a3b17d4f8ba132db1a5ed466b3": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
"model_module": "@jupyter-widgets/controls",
|
674 |
"model_module_version": "2.0.0",
|
675 |
"model_name": "ProgressStyleModel",
|
|
|
677 |
"description_width": ""
|
678 |
}
|
679 |
},
|
680 |
+
"79037b808e294df393a993227a4ff8c3": {
|
681 |
"model_module": "@jupyter-widgets/controls",
|
682 |
"model_module_version": "2.0.0",
|
683 |
"model_name": "ProgressStyleModel",
|
|
|
685 |
"description_width": ""
|
686 |
}
|
687 |
},
|
688 |
+
"7d3e41a01d7f4a3f997b510ad7be62c7": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
689 |
"model_module": "@jupyter-widgets/controls",
|
690 |
"model_module_version": "2.0.0",
|
691 |
+
"model_name": "HTMLStyleModel",
|
692 |
"state": {
|
693 |
+
"description_width": "",
|
694 |
+
"font_size": null,
|
695 |
+
"text_color": null
|
|
|
|
|
|
|
696 |
}
|
697 |
},
|
698 |
+
"805f79a3d7bd493092168b98de443e0b": {
|
699 |
"model_module": "@jupyter-widgets/base",
|
700 |
"model_module_version": "2.0.0",
|
701 |
"model_name": "LayoutModel",
|
702 |
"state": {}
|
703 |
},
|
704 |
+
"8383a80b3a504b58a50458f237ecafd8": {
|
705 |
"model_module": "@jupyter-widgets/base",
|
706 |
"model_module_version": "2.0.0",
|
707 |
"model_name": "LayoutModel",
|
708 |
"state": {}
|
709 |
},
|
710 |
+
"91aa307807cd4abc909e1a0330674020": {
|
711 |
"model_module": "@jupyter-widgets/base",
|
712 |
"model_module_version": "2.0.0",
|
713 |
"model_name": "LayoutModel",
|
714 |
"state": {}
|
715 |
},
|
716 |
+
"988805506e274daaa19a059f19fb51b8": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
717 |
"model_module": "@jupyter-widgets/controls",
|
718 |
"model_module_version": "2.0.0",
|
719 |
"model_name": "FloatProgressModel",
|
720 |
"state": {
|
721 |
"bar_style": "success",
|
722 |
+
"layout": "IPY_MODEL_91aa307807cd4abc909e1a0330674020",
|
723 |
+
"max": 28,
|
724 |
+
"style": "IPY_MODEL_16d09a1085ce4b7c94d3c9838e7b6047",
|
725 |
+
"value": 28
|
726 |
}
|
727 |
},
|
728 |
+
"9dbfeae19c864b1cb2df6c4b39bfa9c9": {
|
729 |
"model_module": "@jupyter-widgets/controls",
|
730 |
"model_module_version": "2.0.0",
|
731 |
+
"model_name": "HTMLModel",
|
732 |
"state": {
|
733 |
+
"layout": "IPY_MODEL_805f79a3d7bd493092168b98de443e0b",
|
734 |
+
"style": "IPY_MODEL_bb9f29e22202434b9988e1850ac188fc",
|
735 |
+
"value": " 0%"
|
736 |
}
|
737 |
},
|
738 |
+
"a0e545db7c0b4b8289e72e53c19fdc3c": {
|
739 |
"model_module": "@jupyter-widgets/controls",
|
740 |
"model_module_version": "2.0.0",
|
741 |
"model_name": "HTMLModel",
|
742 |
"state": {
|
743 |
+
"layout": "IPY_MODEL_8383a80b3a504b58a50458f237ecafd8",
|
744 |
+
"style": "IPY_MODEL_faf0fccdc8044bc69f12c930c57d4e9f",
|
745 |
+
"value": " 28/28 [7:25:40<00:00, 2734.24s/it]"
|
746 |
}
|
747 |
},
|
748 |
+
"ac2f01b8c798419cbd4daf5c12384219": {
|
749 |
"model_module": "@jupyter-widgets/controls",
|
750 |
"model_module_version": "2.0.0",
|
751 |
+
"model_name": "HBoxModel",
|
752 |
"state": {
|
753 |
+
"children": [
|
754 |
+
"IPY_MODEL_08bb114ae5674fd1af84c459d1407555",
|
755 |
+
"IPY_MODEL_45675de1547d489d9f935cb432b4fadf",
|
756 |
+
"IPY_MODEL_e4a50abf99f3496f901a8bb16495cc91"
|
757 |
+
],
|
758 |
+
"layout": "IPY_MODEL_cd191bca40d541228d4826c3885066d7"
|
759 |
}
|
760 |
},
|
761 |
+
"ac7f987a9bcc4c558b6773d573d97134": {
|
762 |
+
"model_module": "@jupyter-widgets/base",
|
763 |
"model_module_version": "2.0.0",
|
764 |
+
"model_name": "LayoutModel",
|
765 |
+
"state": {}
|
|
|
|
|
|
|
|
|
766 |
},
|
767 |
+
"b624b02837f44ae78ec7ecd29ed0f73b": {
|
768 |
+
"model_module": "@jupyter-widgets/base",
|
769 |
"model_module_version": "2.0.0",
|
770 |
+
"model_name": "LayoutModel",
|
771 |
+
"state": {}
|
772 |
+
},
|
773 |
+
"b75fa1272c794c1cbb66cb39d61a5375": {
|
774 |
+
"model_module": "@jupyter-widgets/base",
|
775 |
+
"model_module_version": "2.0.0",
|
776 |
+
"model_name": "LayoutModel",
|
777 |
+
"state": {}
|
778 |
},
|
779 |
+
"bb9f29e22202434b9988e1850ac188fc": {
|
780 |
"model_module": "@jupyter-widgets/controls",
|
781 |
"model_module_version": "2.0.0",
|
782 |
"model_name": "HTMLStyleModel",
|
|
|
786 |
"text_color": null
|
787 |
}
|
788 |
},
|
789 |
+
"c98b44b3cdfc4d1180786cf11521d9d3": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
"model_module": "@jupyter-widgets/base",
|
791 |
"model_module_version": "2.0.0",
|
792 |
"model_name": "LayoutModel",
|
793 |
"state": {}
|
794 |
},
|
795 |
+
"cd191bca40d541228d4826c3885066d7": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
796 |
"model_module": "@jupyter-widgets/base",
|
797 |
"model_module_version": "2.0.0",
|
798 |
"model_name": "LayoutModel",
|
799 |
"state": {}
|
800 |
},
|
801 |
+
"cd8b7bf098b84df197fcd498084e5afd": {
|
802 |
+
"model_module": "@jupyter-widgets/base",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
803 |
"model_module_version": "2.0.0",
|
804 |
+
"model_name": "LayoutModel",
|
805 |
+
"state": {}
|
|
|
|
|
|
|
|
|
806 |
},
|
807 |
+
"e4a50abf99f3496f901a8bb16495cc91": {
|
808 |
"model_module": "@jupyter-widgets/controls",
|
809 |
"model_module_version": "2.0.0",
|
810 |
"model_name": "HTMLModel",
|
811 |
"state": {
|
812 |
+
"layout": "IPY_MODEL_ac7f987a9bcc4c558b6773d573d97134",
|
813 |
+
"style": "IPY_MODEL_43e1040562d1439b801ecfedf5035aee",
|
814 |
+
"value": " 0/29 [00:06<?, ?it/s]"
|
815 |
}
|
816 |
},
|
817 |
+
"f6e60cbeb3a246a189de60bfddf1ea24": {
|
818 |
+
"model_module": "@jupyter-widgets/base",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
819 |
"model_module_version": "2.0.0",
|
820 |
"model_name": "LayoutModel",
|
821 |
"state": {}
|
822 |
},
|
823 |
+
"faf0fccdc8044bc69f12c930c57d4e9f": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
824 |
"model_module": "@jupyter-widgets/controls",
|
825 |
"model_module_version": "2.0.0",
|
826 |
"model_name": "HTMLStyleModel",
|
mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56b866aaf640e4a2ac46d74fe01ced6ceb25c69329569344172884302c004b7e
|
3 |
+
size 14107
|
mlip_arena/tasks/eos/run.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
@@ -11,11 +11,21 @@
|
|
11 |
"text": [
|
12 |
"No module named 'deepmd'\n"
|
13 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
15 |
],
|
16 |
"source": [
|
17 |
"import os\n",
|
18 |
-
"from mp_api.client import MPRester\n",
|
19 |
"from dask.distributed import Client\n",
|
20 |
"from dask_jobqueue import SLURMCluster\n",
|
21 |
"from prefect import task, flow\n",
|
@@ -34,7 +44,7 @@
|
|
34 |
"\n",
|
35 |
"load_dotenv()\n",
|
36 |
"\n",
|
37 |
-
"MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
|
38 |
]
|
39 |
},
|
40 |
{
|
@@ -575,7 +585,7 @@
|
|
575 |
"name": "python",
|
576 |
"nbconvert_exporter": "python",
|
577 |
"pygments_lexer": "ipython3",
|
578 |
-
"version": "3.11.
|
579 |
},
|
580 |
"widgets": {
|
581 |
"application/vnd.jupyter.widget-state+json": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
|
|
11 |
"text": [
|
12 |
"No module named 'deepmd'\n"
|
13 |
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"data": {
|
17 |
+
"text/plain": [
|
18 |
+
"True"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
"execution_count": 2,
|
22 |
+
"metadata": {},
|
23 |
+
"output_type": "execute_result"
|
24 |
}
|
25 |
],
|
26 |
"source": [
|
27 |
"import os\n",
|
28 |
+
"# from mp_api.client import MPRester\n",
|
29 |
"from dask.distributed import Client\n",
|
30 |
"from dask_jobqueue import SLURMCluster\n",
|
31 |
"from prefect import task, flow\n",
|
|
|
44 |
"\n",
|
45 |
"load_dotenv()\n",
|
46 |
"\n",
|
47 |
+
"# MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
|
48 |
]
|
49 |
},
|
50 |
{
|
|
|
585 |
"name": "python",
|
586 |
"nbconvert_exporter": "python",
|
587 |
"pygments_lexer": "ipython3",
|
588 |
+
"version": "3.11.10"
|
589 |
},
|
590 |
"widgets": {
|
591 |
"application/vnd.jupyter.widget-state+json": {
|