cyrusyc commited on
Commit
aecc8a6
1 Parent(s): 91418f9

update leaderboard

Browse files
mlip_arena/models/registry.yaml CHANGED
@@ -157,9 +157,9 @@ SevenNet:
157
  - qmof
158
  gpu-tasks:
159
  - homonuclear-diatomics
160
- github: https://github.com/ACEsuit/mace
161
- doi: https://arxiv.org/abs/2401.00096
162
- date: 2023-12-29
163
  prediction: EFS
164
  nvt: true
165
  npt: true
 
157
  - qmof
158
  gpu-tasks:
159
  - homonuclear-diatomics
160
+ github: https://github.com/MDIL-SNU/SevenNet
161
+ doi: https://doi.org/10.1021/acs.jctc.4c00190
162
+ date:
163
  prediction: EFS
164
  nvt: true
165
  npt: true
serve/leaderboard.py CHANGED
@@ -7,8 +7,9 @@ import streamlit as st
7
  from mlip_arena.models import REGISTRY
8
 
9
  DATA_DIR = Path("mlip_arena/tasks/diatomics")
10
- methods = ["MACE-MP", "Equiformer", "CHGNet", "MACE-OFF", "eSCN", "ALIGNN"]
11
- dfs = [pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json") for method in methods]
 
12
  df = pd.concat(dfs, ignore_index=True)
13
 
14
 
@@ -58,8 +59,7 @@ st.markdown(
58
  <h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>
59
 
60
  MLIP Arena is a platform for benchmarking foundation machine learning interatomic potentials (MLIPs), mainly for disclosing the learned physics and chemistry of the models and their performance on molecular dynamics (MD) simulations.
61
-
62
- The benchmarks are NOT designed to compare model architectures, but to evaluate the readiness and reliability of the open-source, open-weight models to reproduce the qualitatively or quantitatively correct physics.
63
  """, unsafe_allow_html=True)
64
 
65
  st.header("Summary", divider=True)
 
7
  from mlip_arena.models import REGISTRY
8
 
9
  DATA_DIR = Path("mlip_arena/tasks/diatomics")
10
+ # methods = ["MACE-MP", "Equiformer", "CHGNet", "MACE-OFF", "eSCN", "ALIGNN"]
11
+
12
+ dfs = [pd.read_json(DATA_DIR / REGISTRY[model].get("family") / "homonuclear-diatomics.json") for model in REGISTRY]
13
  df = pd.concat(dfs, ignore_index=True)
14
 
15
 
 
59
  <h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>
60
 
61
  MLIP Arena is a platform for benchmarking foundation machine learning interatomic potentials (MLIPs), mainly for disclosing the learned physics and chemistry of the models and their performance on molecular dynamics (MD) simulations.
62
+ The benchmarks are designed to evaluate the readiness and reliability of open-source, open-weight models to reproduce the qualitatively or quantitatively correct physics.
 
63
  """, unsafe_allow_html=True)
64
 
65
  st.header("Summary", divider=True)