from __future__ import annotations import datetime from datetime import datetime from pathlib import Path from typing import Literal, Sequence import numpy as np import torch from ase import Atoms, units from ase.calculators.mixing import SumCalculator from ase.io import read from ase.io.trajectory import Trajectory from ase.md.md import MolecularDynamics from ase.md.npt import NPT from ase.md.velocitydistribution import ( MaxwellBoltzmannDistribution, Stationary, ZeroRotation, ) from scipy.linalg import schur from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator from tqdm.auto import tqdm from mlip_arena.models.utils import EXTMLIPEnum, MLIPMap, external_ase_calculator from mlip_arena.tasks.utils import ( _get_ensemble_defaults, _get_ensemble_schedule, _preset_dynamics, _valid_dynamics, ) def md( atoms: Atoms, calculator_name: str | EXTMLIPEnum, calculator_kwargs: dict | None, dispersion: str | None = None, dispersion_kwargs: dict | None = None, device: str | None = None, ensemble: Literal["nve", "nvt", "npt"] = "nvt", dynamics: str | MolecularDynamics = "langevin", time_step: float | None = None, total_time: float = 1000, temperature: float | Sequence | np.ndarray | None = 300.0, pressure: float | Sequence | np.ndarray | None = None, ase_md_kwargs: dict | None = None, mb_velocity_seed: int | None = None, zero_linear_momentum: bool = True, zero_angular_momentum: bool = True, traj_file: str | Path | None = None, traj_interval: int = 1, # ttime: float = 25 * units.fs, # pfactor: float = (75 * units.fs) ** 1 * units.GPa, # mask: np.ndarray | list[int] | None = None, # traceless: float = 1.0, restart: bool = True, # interval: int = 500, # device: str | None = None, # dtype: str = "float64", ): device = device or ("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") calculator_kwargs = calculator_kwargs or {} if isinstance(calculator_name, EXTMLIPEnum) and calculator_name in EXTMLIPEnum: calc = external_ase_calculator(calculator_name, **calculator_kwargs) elif calculator_name in MLIPMap: calc = MLIPMap[calculator_name](**calculator_kwargs) print(f"Using calculator: {calc}") dispersion_kwargs = dispersion_kwargs or {} dispersion_kwargs.update({"device": device}) if dispersion is not None: disp_calc = TorchDFTD3Calculator( **dispersion_kwargs, ) calc = SumCalculator([calc, disp_calc]) print(f"Using dispersion: {dispersion}") atoms.calc = calc if time_step is None: # If a structure contains an isotope of hydrogen, set default `time_step` # to 0.5 fs, and 2 fs otherwise. has_h_isotope = "H" in atoms.get_chemical_symbols() time_step = 0.5 if has_h_isotope else 2.0 n_steps = int(total_time / time_step) t_schedule, p_schedule = _get_ensemble_schedule( ensemble=ensemble, n_steps=n_steps, temperature=temperature, pressure=pressure, ) ase_md_kwargs = _get_ensemble_defaults( ensemble=ensemble, dynamics=dynamics, t_schedule=t_schedule, p_schedule=p_schedule, ase_md_kwargs=ase_md_kwargs, ) if isinstance(dynamics, str): # Use known dynamics if `self.dynamics` is a str dynamics = dynamics.lower() if dynamics not in _valid_dynamics[ensemble]: raise ValueError( f"{dynamics} thermostat not available for {ensemble}." f"Available {ensemble} thermostats are:" " ".join(_valid_dynamics[ensemble]) ) if ensemble == "nve" and dynamics is None: dynamics = "velocityverlet" md_class = _preset_dynamics[f"{ensemble}_{dynamics}"] elif issubclass(dynamics, MolecularDynamics): md_class = dynamics if md_class is NPT: # Note that until md_func is instantiated, isinstance(md_func,NPT) is False # ASE NPT implementation requires upper triangular cell u, _ = schur(atoms.get_cell(complete=True), output="complex") atoms.set_cell(u.real, scale_atoms=True) last_step = 0 if traj_file is not None: traj_file = Path(traj_file) if restart and traj_file.exists(): traj = read(traj_file, index=":") last_step = len(traj) n_steps -= len(traj) last_atoms = traj[-1] traj = Trajectory(traj_file, "a", atoms) atoms.set_positions(last_atoms.get_positions()) atoms.set_momenta(last_atoms.get_momenta()) else: traj = Trajectory(traj_file, "w", atoms) if not np.isnan(t_schedule).any(): MaxwellBoltzmannDistribution( atoms=atoms, temperature_K=t_schedule[last_step], rng=np.random.default_rng(seed=mb_velocity_seed), ) if zero_linear_momentum: Stationary(atoms) if zero_angular_momentum: ZeroRotation(atoms) md_runner = md_class( atoms=atoms, timestep=time_step * units.fs, **ase_md_kwargs, ) if traj_file is not None: md_runner.attach(traj.write, interval=traj_interval) with tqdm(total=n_steps) as pbar: def _callback(dyn: MolecularDynamics = md_runner) -> None: if ensemble == "nve": return dyn.set_temperature(temperature_K=t_schedule[last_step + dyn.nsteps]) if ensemble == "nvt": return dyn.set_stress(p_schedule[last_step + dyn.nsteps] * 1e3 * units.bar) pbar.update() md_runner.attach(_callback, interval=1) start_time = datetime.now() md_runner.run(steps=n_steps) end_time = datetime.now() traj.close() return {"md_runtime": end_time - start_time}