{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "3200850a-b8fb-4f50-9815-16ae8da0f942", "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "from pathlib import Path\n", "\n", "import numpy as np\n", "import pandas as pd\n", "from ase import Atom, Atoms\n", "from ase.data import chemical_symbols, covalent_radii, vdw_alvarez\n", "from ase.io import read, write\n", "from pymatgen.core import Element\n", "from scipy import stats\n", "from tqdm.auto import tqdm\n", "\n", "from mlip_arena.models.utils import REGISTRY, MLIPEnum\n", "\n", "# model_name = \"MACE-MP(M)\"\n", "\n", "# calc = MLIPEnum[model_name].value()" ] }, { "cell_type": "code", "execution_count": 3, "id": "90887faa-1601-4c4c-9c44-d16731471d7f", "metadata": { "scrolled": true, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "========== MACE-OFF(M) ==========\n", "Selected GPU cuda:0 with 40338.06 MB free memory from 4 GPUs\n", "Default dtype float32 does not match model dtype float64, converting models to float32.\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "60f14aee9df9484997239ace3de2e101", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='H2', pbc=True, cell=[7.4399999999999995, 7.441, 7.441999999999999])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "01f85ac837a44f64950df4fbe5f108f1", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/344 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='He2', pbc=True, cell=[8.866, 8.866999999999999, 8.868])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ab613d7a045e45bd939214bfc6ff0b3f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/418 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "2 is not in list\n", "Atoms(symbols='Li2', pbc=True, cell=[13.144000000000002, 13.145000000000001, 13.146000000000003])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a44cf4d8d9af41ea98901956c5b2e800", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/542 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "3 is not in list\n", "Atoms(symbols='Be2', pbc=True, cell=[12.276, 12.277, 12.278])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e3a16426d1cb4f9785fcfc1fd83dd8cd", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/527 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "4 is not in list\n", "Atoms(symbols='B2', pbc=True, cell=[11.842, 11.843, 11.844000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0b96202a2c594947b6093ecab0d89a25", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/516 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "5 is not in list\n", "Atoms(symbols='C2', pbc=True, cell=[10.974, 10.975, 10.976])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "55e1867137bb450f8c31b378ddcf5f2b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/480 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='N2', pbc=True, cell=[10.292, 10.293, 10.294])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0c71c7705dbc428d81308cdc16942921", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/450 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='O2', pbc=True, cell=[9.3, 9.301, 9.302000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "52a86764001b45cab2fef7af36f4d16a", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/405 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='F2', pbc=True, cell=[9.052, 9.052999999999999, 9.054])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "34a2485e76cd4acc8c5d4caa724037ae", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/401 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='Ne2', pbc=True, cell=[9.796000000000001, 9.797, 9.798000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "da6bf461ce4849ef8b723a140aee5e46", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/437 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "10 is not in list\n", "Atoms(symbols='Na2', pbc=True, cell=[15.5, 15.501, 15.502])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "07b8b95e8418423193b3eb48a1c3197a", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/625 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "11 is not in list\n", "Atoms(symbols='Mg2', pbc=True, cell=[15.562, 15.562999999999999, 15.564])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1032c8118d4e4da6b9ea753d152490b2", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/651 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "12 is not in list\n", "Atoms(symbols='Al2', pbc=True, cell=[13.950000000000001, 13.951, 13.952000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a907fe3e32644eaa884b9c11b80e503e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/588 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "13 is not in list\n", "Atoms(symbols='Si2', pbc=True, cell=[13.578, 13.578999999999999, 13.58])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fd88635852dc4d2ca1c3cd298a760a2e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/578 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "14 is not in list\n", "Atoms(symbols='P2', pbc=True, cell=[11.78, 11.780999999999999, 11.782])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "12bf703b946a4f038142fb8531dbdd44", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/492 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='S2', pbc=True, cell=[11.718, 11.719, 11.72])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "84232451800944dd931a9cc1a3f7c76a", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/491 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='Cl2', pbc=True, cell=[11.284, 11.285, 11.286000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "49a6bc3910244f04b9a74e8d2e8c4142", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/472 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='Ar2', pbc=True, cell=[11.346, 11.347, 11.348])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ebb843c27f634344bd10a526081ca13c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/471 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "18 is not in list\n", "Atoms(symbols='K2', pbc=True, cell=[16.926000000000002, 16.927000000000003, 16.928])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c3cee6fcc4894e5085ce78549feb9177", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/663 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "19 is not in list\n", "Atoms(symbols='Ca2', pbc=True, cell=[16.244, 16.245, 16.246])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "df8ca2be9bfd496ca5cabda54ab5c6fc", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/653 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "20 is not in list\n", "Atoms(symbols='Sc2', pbc=True, cell=[15.996, 15.997, 15.998000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4861cf3841bf4bce95c6f28db390c90c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/646 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "21 is not in list\n", "Atoms(symbols='Ti2', pbc=True, cell=[15.252, 15.253, 15.254000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b8de0654f19c406da7709f59f4d5ab46", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/618 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "22 is not in list\n", "Atoms(symbols='V2', pbc=True, cell=[15.004, 15.004999999999999, 15.006])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "436311045ab541f3b42f9e3082c888c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/612 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "23 is not in list\n", "Atoms(symbols='Cr2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "790a63d1478f4313b967ca5ac646b60e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/634 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "24 is not in list\n", "Atoms(symbols='Mn2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "842404aaf77046fb95be4886c3c6b204", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/634 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "25 is not in list\n", "Atoms(symbols='Fe2', pbc=True, cell=[15.128, 15.129, 15.13])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "421357cb56af4b589fdeafc354559700", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/637 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "26 is not in list\n", "Atoms(symbols='Co2', pbc=True, cell=[14.879999999999999, 14.880999999999998, 14.882])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c0a0dc53185143dc99d99695bc93ffbc", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/630 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "27 is not in list\n", "Atoms(symbols='Ni2', pbc=True, cell=[14.879999999999999, 14.880999999999998, 14.882])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "686f870641b645e19ab34b492285d65b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/632 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "28 is not in list\n", "Atoms(symbols='Cu2', pbc=True, cell=[14.756, 14.757, 14.758000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "af3aa8ccc84a4e9c90cf7be3058f8974", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/618 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "29 is not in list\n", "Atoms(symbols='Zn2', pbc=True, cell=[14.818000000000001, 14.819, 14.820000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1663ce2f57b94ba58726f1807ace289f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/631 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "30 is not in list\n", "Atoms(symbols='Ga2', pbc=True, cell=[14.383999999999999, 14.384999999999998, 14.386])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b4101abb835e446ba361c5f4b8347f75", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/609 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "31 is not in list\n", "Atoms(symbols='Ge2', pbc=True, cell=[14.198, 14.199, 14.200000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3f974765427c4cb5ac7eea72a57cfa58", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/601 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "32 is not in list\n", "Atoms(symbols='As2', pbc=True, cell=[11.655999999999999, 11.656999999999998, 11.658])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a8e033dbae494467a5028eab97e28bbe", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/475 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "33 is not in list\n", "Atoms(symbols='Se2', pbc=True, cell=[11.284, 11.285, 11.286000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c430c0fe2a6a4f45a6b15cf6a6266c70", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/456 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "34 is not in list\n", "Atoms(symbols='Br2', pbc=True, cell=[11.532000000000002, 11.533000000000001, 11.534000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "adc60afc577747f4ab184e8bc4ec889e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/468 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='Kr2', pbc=True, cell=[13.950000000000001, 13.951, 13.952000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a7c29ad28c4148e8899542b0dbf542a4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/593 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "36 is not in list\n", "Atoms(symbols='Rb2', pbc=True, cell=[19.902, 19.903000000000002, 19.904])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "54d89e170cca451c8c3f04f7c921c1c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/797 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "37 is not in list\n", "Atoms(symbols='Sr2', pbc=True, cell=[17.608, 17.609, 17.61])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3108baf3f8ae40069fb5c5d282eb45f0", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/704 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "38 is not in list\n", "Atoms(symbols='Y2', pbc=True, cell=[17.05, 17.051000000000002, 17.052])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f83629d595504b658a703122591784a1", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/681 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "39 is not in list\n", "Atoms(symbols='Zr2', pbc=True, cell=[15.624, 15.625, 15.626000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "31f0e507a3414cde8f21821b16eae5ca", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/623 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "40 is not in list\n", "Atoms(symbols='Nb2', pbc=True, cell=[15.872000000000002, 15.873000000000001, 15.874000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "25d1d0e58c5948b7af0bf6435f32a5af", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/646 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "41 is not in list\n", "Atoms(symbols='Mo2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f0fa99be9cb04af081dcb4ce3d7728f2", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/620 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "42 is not in list\n", "Atoms(symbols='Tc2', pbc=True, cell=[15.128, 15.129, 15.13])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "937365c9a05a4cabb90e4f56bf63ad51", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/624 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "43 is not in list\n", "Atoms(symbols='Ru2', pbc=True, cell=[15.252, 15.253, 15.254000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0aa4efe49e48493c974959853942d76b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/631 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "44 is not in list\n", "Atoms(symbols='Rh2', pbc=True, cell=[15.128, 15.129, 15.13])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dec48a374ed7401d91cbe262d527e39c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/628 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "45 is not in list\n", "Atoms(symbols='Pd2', pbc=True, cell=[13.33, 13.331, 13.332])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "85b8216dcd1b4178b56d9ae347782b99", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/541 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "46 is not in list\n", "Atoms(symbols='Ag2', pbc=True, cell=[15.686, 15.687, 15.688])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bb01328f2d7e4e2cae40113d6d5bd9d6", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/653 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "47 is not in list\n", "Atoms(symbols='Cd2', pbc=True, cell=[15.438000000000002, 15.439000000000002, 15.440000000000003])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3d01ff97a4d143c687c9bdb1c3a9c849", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/642 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "48 is not in list\n", "Atoms(symbols='In2', pbc=True, cell=[15.066, 15.067, 15.068000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4a5d8d48ed684b9b94d18146443f6b8b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/625 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "49 is not in list\n", "Atoms(symbols='Sn2', pbc=True, cell=[15.004, 15.004999999999999, 15.006])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f42b59ee5d74427088ed03dda2be8987", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/625 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "50 is not in list\n", "Atoms(symbols='Sb2', pbc=True, cell=[15.314000000000002, 15.315000000000001, 15.316000000000003])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "720434d9f6fe4cbaada16a5bb1ec6450", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/640 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "51 is not in list\n", "Atoms(symbols='Te2', pbc=True, cell=[12.338000000000001, 12.339, 12.340000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "53726bf903e545bc82afe94eb0cf233c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/492 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "52 is not in list\n", "Atoms(symbols='I2', pbc=True, cell=[12.648000000000001, 12.649000000000001, 12.650000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bc018829104e4b719a12870c7ddfc89e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/507 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Atoms(symbols='Xe2', pbc=True, cell=[12.772, 12.773, 12.774000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9cece0b309864ddb83616ae5447e1971", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/512 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "54 is not in list\n", "Atoms(symbols='Cs2', pbc=True, cell=[21.576, 21.577, 21.578])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eb4596c6422b4318a71b912aeca8e47d", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/859 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "55 is not in list\n", "Atoms(symbols='Ba2', pbc=True, cell=[18.785999999999998, 18.787, 18.787999999999997])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "54e7da5565bf45459b919b1084bb1032", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/745 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "56 is not in list\n", "Atoms(symbols='La2', pbc=True, cell=[18.476, 18.477, 18.477999999999998])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9cf99aa57c9144729661e4ed75a49034", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/737 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "57 is not in list\n", "Atoms(symbols='Ce2', pbc=True, cell=[17.855999999999998, 17.857, 17.857999999999997])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "892378b456c349daa06ce702064620bd", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/709 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "58 is not in list\n", "Atoms(symbols='Pr2', pbc=True, cell=[18.104, 18.105, 18.105999999999998])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "896a935ef0df4527a8b386c63d407889", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/722 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "59 is not in list\n", "Atoms(symbols='Nd2', pbc=True, cell=[18.290000000000003, 18.291000000000004, 18.292])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d1571b3ca8494d20a58d951a10171c32", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/733 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "60 is not in list\n", "Atoms(symbols='Pm2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5a19cdefec1e47baa7d7db6f233263d7", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/420 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "61 is not in list\n", "Atoms(symbols='Sm2', pbc=True, cell=[17.98, 17.981, 17.982])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "41a2fdd56f8243a8b67d7a9a1d6667f3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/720 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "62 is not in list\n", "Atoms(symbols='Eu2', pbc=True, cell=[17.794, 17.795, 17.796])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "83e7045b2cf947ae81cfa3bb0139bf07", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/711 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "63 is not in list\n", "Atoms(symbols='Gd2', pbc=True, cell=[17.546, 17.547, 17.548])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "76738693289543c3b6ef87521e14fe60", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/700 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "64 is not in list\n", "Atoms(symbols='Tb2', pbc=True, cell=[17.298000000000002, 17.299000000000003, 17.3])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9e1624f09df54e1088fbea1196661e81", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/690 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "65 is not in list\n", "Atoms(symbols='Dy2', pbc=True, cell=[17.794, 17.795, 17.796])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b9548f8076484c6bad28ce9b43dc1f51", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/716 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "66 is not in list\n", "Atoms(symbols='Ho2', pbc=True, cell=[17.422, 17.423000000000002, 17.424])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0ca06149ad4b4876a9def18a2b29ac88", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/698 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "67 is not in list\n", "Atoms(symbols='Er2', pbc=True, cell=[17.546, 17.547, 17.548])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b923c7e24849445ea3619bf203c14a1e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/707 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "68 is not in list\n", "Atoms(symbols='Tm2', pbc=True, cell=[17.298000000000002, 17.299000000000003, 17.3])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "92ee1257d30943b38373db07749c35ce", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/693 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "69 is not in list\n", "Atoms(symbols='Yb2', pbc=True, cell=[17.36, 17.361, 17.362])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5d1380c902964aacb8981bb53faf00f1", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/699 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "70 is not in list\n", "Atoms(symbols='Lu2', pbc=True, cell=[16.988000000000003, 16.989000000000004, 16.990000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3c60668859374504943b502ea974534c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/681 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "71 is not in list\n", "Atoms(symbols='Hf2', pbc=True, cell=[16.306, 16.307000000000002, 16.308])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "298112ab16804d8ca58858ff1f20b9a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/657 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "72 is not in list\n", "Atoms(symbols='Ta2', pbc=True, cell=[15.686, 15.687, 15.688])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3c5e86ee10e045e5a89d9e75882b5d94", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/631 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "73 is not in list\n", "Atoms(symbols='W2', pbc=True, cell=[15.934, 15.934999999999999, 15.936])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "423d9d78ce8b49df8ddaf756ffdbeb88", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/650 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "74 is not in list\n", "Atoms(symbols='Re2', pbc=True, cell=[15.438000000000002, 15.439000000000002, 15.440000000000003])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cca05a5f87b5459a8b9528801eac5352", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/636 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "75 is not in list\n", "Atoms(symbols='Os2', pbc=True, cell=[15.376, 15.376999999999999, 15.378])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cf8ff0747782479e9a77375a1343bf17", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/639 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "76 is not in list\n", "Atoms(symbols='Ir2', pbc=True, cell=[14.942000000000002, 14.943000000000001, 14.944000000000003])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "45208b327918488b8b346f52440e16e3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/620 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "77 is not in list\n", "Atoms(symbols='Pt2', pbc=True, cell=[14.198, 14.199, 14.200000000000001])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c5b01dcc37124116b16530e077ad6d97", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/587 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "78 is not in list\n", "Atoms(symbols='Au2', pbc=True, cell=[14.383999999999999, 14.384999999999998, 14.386])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7048662f5a784355b08232fc16320365", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/596 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "79 is not in list\n", "Atoms(symbols='Hg2', pbc=True, cell=[15.190000000000001, 15.191, 15.192000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b540a851229e4671b03a9955919fba60", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/640 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "80 is not in list\n", "Atoms(symbols='Tl2', pbc=True, cell=[15.314000000000002, 15.315000000000001, 15.316000000000003])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "de413df4d43d4ecab478f88217612a33", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/635 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "81 is not in list\n", "Atoms(symbols='Pb2', pbc=True, cell=[16.12, 16.121000000000002, 16.122])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a3da5c3e1e4844ee8745784f5581c9c9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/674 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "82 is not in list\n", "Atoms(symbols='Bi2', pbc=True, cell=[15.748000000000001, 15.749, 15.750000000000002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "84760d2ada42494b858dfcf6d39b476d", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/654 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "83 is not in list\n", "Atoms(symbols='Po2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f01183fb7b724696a64c0f777420d8fe", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/474 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "84 is not in list\n", "Atoms(symbols='At2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fce4419e5e2140a6b0b808088cf59e48", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/465 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "85 is not in list\n", "Atoms(symbols='Rn2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "865e6262d40c4fc1938209464a06643d", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/465 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "86 is not in list\n", "Atoms(symbols='Fr2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "707c38a2ba64490bb1402d39fd9c52d4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/365 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "87 is not in list\n", "Atoms(symbols='Ra2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fb5e8b261d7c411dafc1f87eff2df6d1", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/401 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "88 is not in list\n", "Atoms(symbols='Ac2', pbc=True, cell=[17.36, 17.361, 17.362])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e6f30f30f7f54d7297c7a53ab239258f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/674 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "89 is not in list\n", "Atoms(symbols='Th2', pbc=True, cell=[18.166, 18.167, 18.168])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4fb9f03322f6499694f1b6dbf2113463", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/722 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "90 is not in list\n", "Atoms(symbols='Pa2', pbc=True, cell=[17.855999999999998, 17.857, 17.857999999999997])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "54ac3a74c40b418b94608f5594b3d359", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/712 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "91 is not in list\n", "Atoms(symbols='U2', pbc=True, cell=[16.802, 16.803, 16.804])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f7840bcd21354066a323d0536e8ec8c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/663 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "92 is not in list\n", "Atoms(symbols='Np2', pbc=True, cell=[17.483999999999998, 17.485, 17.485999999999997])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b48fa322ffc74160a4b483cbffa2aa9b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/703 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "93 is not in list\n", "Atoms(symbols='Pu2', pbc=True, cell=[17.422, 17.423000000000002, 17.424])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "83ceecdbf5b648f1a530f46149790c9b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/702 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "94 is not in list\n", "Atoms(symbols='Am2', pbc=True, cell=[17.546, 17.547, 17.548])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "df3dbcf70c244c249e677c11078cbd52", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/715 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "95 is not in list\n", "Atoms(symbols='Cm2', pbc=True, cell=[18.91, 18.911, 18.912])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ea11a75aae8d43158103952ae9719b8a", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/793 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "96 is not in list\n", "Atoms(symbols='Bk2', pbc=True, cell=[21.08, 21.081, 21.081999999999997])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d894f668a8a3455baadd0e6882eb592c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1036 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "97 is not in list\n", "Atoms(symbols='Cf2', pbc=True, cell=[18.91, 18.911, 18.912])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c17ed1946a8643ce921a5dbb2597c5c0", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/927 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "98 is not in list\n", "Atoms(symbols='Es2', pbc=True, cell=[16.740000000000002, 16.741000000000003, 16.742])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "baaf28096fbc4a37b46dfab7b1ff51d2", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/819 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "99 is not in list\n", "Atoms(symbols='Fm2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6ae91484eae64b0bb8b804b6e1d0cd13", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "100 is not in list\n", "Atoms(symbols='Md2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "56eb7be027184430a41451a5b4b35489", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "101 is not in list\n", "Atoms(symbols='No2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f2648f8226f2439ab06cb1123091d96e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "102 is not in list\n", "Atoms(symbols='Lr2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "57d9a32acc164368b6454a93d1af32d2", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "103 is not in list\n", "Atoms(symbols='Rf2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "abc295ec44e947dabbecd002950da314", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "104 is not in list\n", "Atoms(symbols='Db2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ea6ef834e6fc44fcbf6b1ab44ec379e3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "105 is not in list\n", "Atoms(symbols='Sg2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aaa35c274b08467e86b690c9697aedb7", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "106 is not in list\n", "Atoms(symbols='Bh2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "04a9d6f79b344f2d836ebd22e38cf5aa", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "107 is not in list\n", "Atoms(symbols='Hs2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "747b6cb9ffd045ffb64cb3e2295bea06", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "108 is not in list\n", "Atoms(symbols='Mt2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5deb50644d58476cbe6b68866c6b513f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "109 is not in list\n", "Atoms(symbols='Ds2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c18cd8b6069e4fda917ab388fa8895a2", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "110 is not in list\n", "Atoms(symbols='Rg2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "54d0eaa9374e49af9bfa944f11dd944b", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "111 is not in list\n", "Atoms(symbols='Cn2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9062ff7ef8004a91a83143148f6be4c3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "112 is not in list\n", "Atoms(symbols='Nh2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c6484bf80eb4445a83d0fbda39d96c76", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "113 is not in list\n", "Atoms(symbols='Fl2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f6d31a7f18364512b2c9d6c5a40fa427", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "114 is not in list\n", "Atoms(symbols='Mc2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ba8206f8afa74c68a68fb6c093c52e46", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "115 is not in list\n", "Atoms(symbols='Lv2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ece8574e260446c593992e1acf7d10ea", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "116 is not in list\n", "Atoms(symbols='Ts2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ca585859fce94007b174054465be99be", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "117 is not in list\n", "Atoms(symbols='Og2', pbc=True, cell=[12.0, 12.001, 12.002])\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2730cd949b314eb4b9c7e01d383d0940", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/582 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "118 is not in list\n" ] } ], "source": [ "for model in MLIPEnum:\n", " \n", " model_name = model.name\n", " \n", " json_fpath = Path(REGISTRY[model_name][\"family\"]) / \"homonuclear-diatomics.json\"\n", " \n", " if json_fpath.exists():\n", " continue\n", " \n", " print(f\"========== {model_name} ==========\")\n", "\n", " calc = MLIPEnum[model_name].value()\n", "\n", " for symbol in tqdm(chemical_symbols[1:]):\n", "\n", " s = set([symbol])\n", "\n", " if \"X\" in s:\n", " continue\n", "\n", " try:\n", " atom = Atom(symbol)\n", " rmin = 0.9 * covalent_radii[atom.number]\n", " rvdw = vdw_alvarez.vdw_radii[atom.number] if atom.number < len(vdw_alvarez.vdw_radii) else np.nan\n", " rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6\n", " rstep = 0.01\n", "\n", " a = 2 * rmax\n", "\n", " npts = int((rmax - rmin)/rstep)\n", "\n", " rs = np.linspace(rmin, rmax, npts)\n", " es = np.zeros_like(rs)\n", "\n", " da = symbol + symbol\n", "\n", " out_dir = Path(REGISTRY[model_name][\"family\"]) / str(da)\n", " os.makedirs(out_dir, exist_ok=True)\n", "\n", " skip = 0\n", "\n", " element = Element(symbol)\n", "\n", " try:\n", " m = element.valence[1]\n", " if element.valence == (0, 2):\n", " m = 0\n", " except:\n", " m = 0\n", "\n", "\n", " r = rs[0]\n", "\n", " positions = [\n", " [a/2-r/2, a/2, a/2],\n", " [a/2+r/2, a/2, a/2],\n", " ]\n", "\n", " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n", "\n", " if traj_fpath.exists():\n", " traj = read(traj_fpath, index=\":\")\n", " skip = len(traj)\n", " atoms = traj[-1]\n", " else:\n", " # Create the unit cell with two atoms\n", " atoms = Atoms(\n", " da,\n", " positions=positions,\n", " # magmoms=magmoms,\n", " cell=[a, a+0.001, a+0.002],\n", " pbc=True\n", " )\n", "\n", " print(atoms)\n", "\n", " atoms.calc = calc\n", "\n", " for i, r in enumerate(tqdm(rs)):\n", "\n", " if i < skip:\n", " continue\n", "\n", " positions = [\n", " [a/2-r/2, a/2, a/2],\n", " [a/2+r/2, a/2, a/2],\n", " ]\n", "\n", " # atoms.set_initial_magnetic_moments(magmoms)\n", "\n", " atoms.set_positions(positions)\n", "\n", " es[i] = atoms.get_potential_energy()\n", "\n", " write(traj_fpath, atoms, append=\"a\")\n", " except Exception as e:\n", " print(e)\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "a0ac2c09-370b-4fdd-bf74-ea5c4ade0215", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "========== MACE-MP(M) ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fd91fe7d9c4c455c80e8324bd9926ef8", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", "/tmp/ipykernel_275368/4160231063.py:103: RuntimeWarning: invalid value encountered in scalar divide\n", " \"tortuosity\": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),\n", "/tmp/ipykernel_275368/4160231063.py:105: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-descending-force\": stats.spearmanr(rs[iminf:], fs[iminf:]).statistic,\n", "/tmp/ipykernel_275368/4160231063.py:107: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-repulsion-energy\": stats.spearmanr(rs[imine:], es[imine:]).statistic,\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== CHGNet ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e26d83ceeac4484c92679cc26f7c41a9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== M3GNet ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ac04367f9be54d34a4f07b69ab4850ca", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", "/tmp/ipykernel_275368/4160231063.py:106: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-ascending-force\": stats.spearmanr(rs[:iminf], fs[:iminf]).statistic,\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== ORB ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b5ecf455670d44f095423a83166c2127", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== SevenNet ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bff0a28cba234f318bcfac953af5e451", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", "/tmp/ipykernel_275368/4160231063.py:108: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-attraction-energy\": stats.spearmanr(rs[:imine], es[:imine]).statistic,\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== EquiformerV2(OC22) ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ed1abfe116eb46c79f1692f1081179a1", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", "/tmp/ipykernel_275368/4160231063.py:103: RuntimeWarning: invalid value encountered in scalar divide\n", " \"tortuosity\": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),\n", "/tmp/ipykernel_275368/4160231063.py:107: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-repulsion-energy\": stats.spearmanr(rs[imine:], es[imine:]).statistic,\n", "/tmp/ipykernel_275368/4160231063.py:108: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-attraction-energy\": stats.spearmanr(rs[:imine], es[:imine]).statistic,\n", "/tmp/ipykernel_275368/4160231063.py:103: RuntimeWarning: divide by zero encountered in scalar divide\n", " \"tortuosity\": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== EquiformerV2(OC20) ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bc3ded4031c64ce3bc391a4cf6588d33", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== eSCN(OC20) ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e01d03146a9d48b39453c7d009f351b9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "========== MACE-OFF(M) ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d2db61130b304bbf9a9663f7816b4cb7", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "========== ALIGNN ==========\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5548223541194414821c0884c79d50df", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/118 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_275368/4160231063.py:111: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", "/tmp/ipykernel_275368/4160231063.py:108: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.\n", " \"spearman-attraction-energy\": stats.spearmanr(rs[:imine], es[:imine]).statistic,\n" ] } ], "source": [ "\n", "\n", "for model in MLIPEnum:\n", " \n", " model_name = model.name\n", " \n", " print(f\"========== {model_name} ==========\")\n", " \n", " df = pd.DataFrame(columns=[\n", " \"name\", \n", " \"method\", \n", " \"R\", \"E\", \"F\", \"S^2\", \n", " \"force-flip-times\",\n", " \"force-total-variation\",\n", " \"energy-diff-flip-times\",\n", " \"energy-grad-norm-max\",\n", " \"energy-jump\",\n", " \"energy-total-variation\",\n", " \"tortuosity\",\n", " \"conservation-deviation\",\n", " \"spearman-descending-force\",\n", " \"spearman-ascending-force\",\n", " \"spearman-repulsion-energy\",\n", " \"spearman-attraction-energy\"\n", " ])\n", " \n", "\n", " for symbol in tqdm(chemical_symbols[1:]):\n", "\n", " da = symbol + symbol\n", "\n", " out_dir = Path(REGISTRY[model_name][\"family\"]) / da\n", "\n", " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n", "\n", "\n", " if traj_fpath.exists():\n", " traj = read(traj_fpath, index=\":\")\n", " else:\n", " continue\n", "\n", " Rs, Es, Fs, S2s = [], [], [], []\n", " for atoms in traj:\n", "\n", " vec = atoms.positions[1] - atoms.positions[0]\n", " r = np.linalg.norm(vec)\n", " e = atoms.get_potential_energy()\n", " f = np.inner(vec/r, atoms.get_forces()[1])\n", " # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))\n", "\n", " Rs.append(r)\n", " Es.append(e)\n", " Fs.append(f)\n", " # S2s.append(s2)\n", "\n", " rs = np.array(Rs)\n", " es = np.array(Es)\n", " fs = np.array(Fs)\n", "\n", " indices = np.argsort(rs)[::-1]\n", " rs = rs[indices]\n", " es = es[indices]\n", " fs = fs[indices]\n", "\n", " iminf = np.argmin(fs)\n", " imine = np.argmin(es)\n", "\n", " de_dr = np.gradient(es, rs)\n", " d2e_dr2 = np.gradient(de_dr, rs)\n", "\n", " rounded_fs = np.copy(fs)\n", " rounded_fs[np.abs(rounded_fs) < 1e-2] = 0\n", " fs_sign = np.sign(rounded_fs)\n", " fs_sign = fs_sign[fs_sign != 0]\n", "\n", " # rounded_ediff = np.diff(es)\n", " # rounded_ediff[np.abs(rounded_ediff) < zero_threshold] = 0\n", " ediff = np.diff(es)\n", " ediff[np.abs(ediff) < 1e-3] = 0\n", " ediff_sign = np.sign(ediff)\n", " mask = ediff_sign != 0\n", " ediff = ediff[mask]\n", " ediff_sign = ediff_sign[mask]\n", " ediff_flip = np.diff(ediff_sign) != 0\n", " ejump = np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum()\n", "\n", " conservation_deviation = np.mean(np.abs(fs + de_dr))\n", " \n", " etv = np.sum(np.abs(np.diff(es)))\n", "\n", " data = {\n", " \"name\": da,\n", " \"method\": model_name,\n", " \"R\": rs,\n", " \"E\": es,\n", " \"F\": fs,\n", " \"S^2\": S2s,\n", " \"force-flip-times\": np.sum(np.diff(fs_sign)!=0),\n", " \"force-total-variation\": np.sum(np.abs(np.diff(fs))),\n", " \"energy-diff-flip-times\": np.sum(ediff_flip),\n", " \"energy-grad-norm-max\": np.max(np.abs(de_dr)),\n", " \"energy-jump\": ejump,\n", " # \"energy-grad-norm-mean\": np.mean(de_dr_abs),\n", " \"energy-total-variation\": etv,\n", " \"tortuosity\": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),\n", " \"conservation-deviation\": conservation_deviation,\n", " \"spearman-descending-force\": stats.spearmanr(rs[iminf:], fs[iminf:]).statistic,\n", " \"spearman-ascending-force\": stats.spearmanr(rs[:iminf], fs[:iminf]).statistic,\n", " \"spearman-repulsion-energy\": stats.spearmanr(rs[imine:], es[imine:]).statistic,\n", " \"spearman-attraction-energy\": stats.spearmanr(rs[:imine], es[:imine]).statistic,\n", " }\n", "\n", " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", "\n", "\n", " json_fpath = Path(REGISTRY[model_name][\"family\"]) / \"homonuclear-diatomics.json\"\n", "\n", " if json_fpath.exists():\n", " df0 = pd.read_json(json_fpath)\n", " df = pd.concat([df0, df], ignore_index=True)\n", " df.drop_duplicates(inplace=True, subset=[\"name\", \"method\"], keep='last')\n", "\n", " df.to_json(json_fpath, orient=\"records\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "e0dd4367-3dca-440f-a7a9-7fdd84183f2c", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", " | name | \n", "method | \n", "R | \n", "E | \n", "F | \n", "S^2 | \n", "force-flip-times | \n", "force-total-variation | \n", "energy-diff-flip-times | \n", "energy-grad-norm-max | \n", "energy-jump | \n", "energy-total-variation | \n", "conservation-deviation | \n", "spearman-descending-force | \n", "spearman-ascending-force | \n", "spearman-repulsion-energy | \n", "spearman-attraction-energy | \n", "tortuosity | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
118 | \n", "HH | \n", "ALIGNN | \n", "[3.7199999999999998, 3.70996794, 3.69993586, 3... | \n", "[-1.2249419689178467, -1.2238645553588867, -1.... | \n", "[1.91e-06, 0.00826454, 0.00533009, -0.00355052... | \n", "[] | \n", "29 | \n", "443.614255 | \n", "30 | \n", "40.656501 | \n", "4.074248 | \n", "13.676080 | \n", "2.022960 | \n", "-0.200684 | \n", "-0.119952 | \n", "-0.986572 | \n", "0.844786 | \n", "1.797762 | \n", "
119 | \n", "HeHe | \n", "ALIGNN | \n", "[4.433, 4.4229736200000005, 4.41294724, 4.4029... | \n", "[2.4748411178588867, 2.4748411178588867, 2.474... | \n", "[0.0, -1e-08, 0.0, 0.0, 1e-08, 0.0, 0.0, 0.0, ... | \n", "[] | \n", "44 | \n", "1448.979436 | \n", "43 | \n", "160.175544 | \n", "13.831072 | \n", "32.544741 | \n", "4.849522 | \n", "-0.021494 | \n", "-0.195001 | \n", "-0.720218 | \n", "0.609519 | \n", "3.921846 | \n", "
120 | \n", "LiLi | \n", "ALIGNN | \n", "[6.572000000000001, 6.561981520000001, 6.55196... | \n", "[-0.21738338470458984, -0.21738338470458984, -... | \n", "[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... | \n", "[] | \n", "22 | \n", "1127.749591 | \n", "20 | \n", "281.659136 | \n", "2.067203 | \n", "20.053466 | \n", "2.469147 | \n", "-0.714286 | \n", "-0.444127 | \n", "-0.991010 | \n", "-0.654715 | \n", "1.386696 | \n", "
121 | \n", "BeBe | \n", "ALIGNN | \n", "[6.138000000000001, 6.12797338, 6.117946759999... | \n", "[2.665587902069092, 2.665587902069092, 2.66558... | \n", "[0.0, 0.0, 0.0, 0.0, 1e-08, 0.0, 0.0, 0.0, 0.0... | \n", "[] | \n", "25 | \n", "1645.960357 | \n", "21 | \n", "145.040462 | \n", "9.422094 | \n", "51.647955 | \n", "5.076523 | \n", "0.544090 | \n", "-0.158055 | \n", "-0.989962 | \n", "0.342476 | \n", "1.715953 | \n", "
122 | \n", "BB | \n", "ALIGNN | \n", "[5.921000000000001, 5.91097088, 5.900941739999... | \n", "[0.6220548152923584, 0.6220548152923584, 0.622... | \n", "[0.0, 0.0, 1e-08, 0.0, 0.0, 1e-08, -1e-08, -1e... | \n", "[] | \n", "35 | \n", "1811.413732 | \n", "36 | \n", "131.340791 | \n", "13.088368 | \n", "52.691856 | \n", "5.551787 | \n", "0.052632 | \n", "-0.171460 | \n", "-0.985024 | \n", "0.757880 | \n", "1.617372 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
231 | \n", "FlFl | \n", "ALIGNN | \n", "[6.0, 5.989982779999999, 5.979965579999999, 5.... | \n", "[-10.127323150634766, -10.127323150634766, -10... | \n", "[0.0, 0.0, -9.5e-07, 0.0, 0.0, 0.0, 0.0, 9.5e-... | \n", "[] | \n", "39 | \n", "3329.770831 | \n", "44 | \n", "181.338142 | \n", "12.292844 | \n", "84.239434 | \n", "8.151059 | \n", "-0.249255 | \n", "-0.316556 | \n", "-0.946770 | \n", "0.159576 | \n", "2.694147 | \n", "
232 | \n", "McMc | \n", "ALIGNN | \n", "[6.0, 5.989982779999999, 5.979965579999999, 5.... | \n", "[-10.127323150634766, -10.127323150634766, -10... | \n", "[0.0, 0.0, -9.5e-07, 0.0, 0.0, 0.0, 0.0, 9.5e-... | \n", "[] | \n", "39 | \n", "3329.770831 | \n", "44 | \n", "181.338142 | \n", "12.292844 | \n", "84.239434 | \n", "8.151059 | \n", "-0.249255 | \n", "-0.316556 | \n", "-0.946770 | \n", "0.159576 | \n", "2.694147 | \n", "
233 | \n", "LvLv | \n", "ALIGNN | \n", "[6.0, 5.989982779999999, 5.979965579999999, 5.... | \n", "[-10.127323150634766, -10.127323150634766, -10... | \n", "[0.0, 0.0, -9.5e-07, 0.0, 0.0, 0.0, 0.0, 9.5e-... | \n", "[] | \n", "39 | \n", "3329.770831 | \n", "44 | \n", "181.338142 | \n", "12.292844 | \n", "84.239434 | \n", "8.151059 | \n", "-0.249255 | \n", "-0.316556 | \n", "-0.946770 | \n", "0.159576 | \n", "2.694147 | \n", "
234 | \n", "TsTs | \n", "ALIGNN | \n", "[6.0, 5.989982779999999, 5.979965579999999, 5.... | \n", "[-10.127323150634766, -10.127323150634766, -10... | \n", "[0.0, 0.0, -9.5e-07, 0.0, 0.0, 0.0, 0.0, 9.5e-... | \n", "[] | \n", "39 | \n", "3329.770831 | \n", "44 | \n", "181.338142 | \n", "12.292844 | \n", "84.239434 | \n", "8.151059 | \n", "-0.249255 | \n", "-0.316556 | \n", "-0.946770 | \n", "0.159576 | \n", "2.694147 | \n", "
235 | \n", "OgOg | \n", "ALIGNN | \n", "[6.0, 5.989982779999999, 5.979965579999999, 5.... | \n", "[-10.127323150634766, -10.127323150634766, -10... | \n", "[0.0, 0.0, -9.5e-07, 0.0, 0.0, 0.0, 0.0, 9.5e-... | \n", "[] | \n", "39 | \n", "3329.770831 | \n", "44 | \n", "181.338142 | \n", "12.292844 | \n", "84.239434 | \n", "8.151059 | \n", "-0.249255 | \n", "-0.316556 | \n", "-0.946770 | \n", "0.159576 | \n", "2.694147 | \n", "
118 rows × 18 columns
\n", "