from pathlib import Path import pandas as pd import streamlit as st # from mlip_arena.models.utils import MLIPEnum, REGISTRY from mlip_arena.models import REGISTRY DATA_DIR = Path("mlip_arena/tasks/diatomics") methods = ["MACE-MP", "Equiformer", "CHGNet", "MACE-OFF", "eSCN", "ALIGNN"] dfs = [pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json") for method in methods] df = pd.concat(dfs, ignore_index=True) table = pd.DataFrame(columns=[ "Model", "Supported elements", # "No. of reversed forces", # "Energy-consistent forces", "Prediction", "NVT", "NPT", "Code", "Paper", "Last updated", ]) for model in REGISTRY: rows = df[df["method"] == model] metadata = REGISTRY.get(model, {}) new_row = { "Model": model, "Supported elements": len(rows["name"].unique()), # "No. of reversed forces": None, # Replace with actual logic if available # "Energy-consistent forces": None, # Replace with actual logic if available "Prediction": metadata.get("prediction", None), "NVT": "✅" if metadata.get("nvt", False) else "❌", "NPT": "✅" if metadata.get("npt", False) else "❌", "Code": metadata.get("github", None) if metadata else None, "Paper": metadata.get("doi", None) if metadata else None, } table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) table.set_index("Model", inplace=True) s = table.style.background_gradient( cmap="PuRd", subset=["Supported elements"], vmin=0, vmax=120 ) st.warning("MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.", icon="⚠️") st.info("Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.", icon="🤗") st.markdown( """

⚔️ MLIP Arena Leaderboard ⚔️

MLIP Arena is a platform for benchmarking foundation machine learning interatomic potentials (MLIPs), mainly for disclosing the learned physics and chemistry of the models and their performance on molecular dynamics (MD) simulations. The benchmarks are NOT designed to compare model architectures, but to evaluate the readiness and reliability of the open-source, open-weight models to reproduce the qualitatively or quantitatively correct physics. """, unsafe_allow_html=True) st.header("Summary", divider=True) st.dataframe( s, use_container_width=True, column_config={ "Code": st.column_config.LinkColumn( # "GitHub", # help="The top trending Streamlit apps", # validate="^https://[a-z]+\.streamlit\.app$", max_chars=100, display_text="GitHub", ), "Paper": st.column_config.LinkColumn( # validate="^https://[a-z]+\.streamlit\.app$", max_chars=100, display_text="arXiv", ), }, )