from pathlib import Path import numpy as np import pandas as pd import streamlit as st from mlip_arena.models import REGISTRY as MODELS valid_models = [ model for model, metadata in MODELS.items() if Path(__file__).stem in metadata.get("gpu-tasks", []) ] DATA_DIR = Path("mlip_arena/tasks/combustion") @st.cache_data def get_data(models): families = [MODELS[str(model)]["family"] for model in models] dfs = [ pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families ] df = pd.concat(dfs, ignore_index=True) df.drop_duplicates(inplace=True, subset=["formula", "method"]) return df df = get_data(valid_models) @st.cache_data def get_com_drifts(df): df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True) # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame( df_exploded["com_drifts"].tolist(), index=df_exploded.index ) # Drop the original 'com_drifts' column df_flat = df_exploded.drop(columns=["com_drifts"]) df_flat["total_com_drift"] = np.sqrt( df_flat["com_drift_x"] ** 2 + df_flat["com_drift_y"] ** 2 + df_flat["com_drift_z"] ** 2 ) return df_flat df_exploded = get_com_drifts(df) table = pd.DataFrame() # def render(): # st.dataframe( # table, # use_container_width=True, # )