from pathlib import Path import yaml from huggingface_hub import HfApi, HfFileSystem, hf_hub_download from mlip_arena.models import MLIP from mlip_arena.models import REGISTRY as MODEL_REGISTRY # from .run import md as MD # __all__ = ["MD"] with open(Path(__file__).parent / "registry.yaml") as f: REGISTRY = yaml.safe_load(f) class Task: def __init__(self): self.name: str = self.__class__.__name__ # display name on the leaderboard def run_local(self, model: MLIP): """Run the task using the given model and return the results.""" raise NotImplementedError def run_hf(self, model: MLIP): """Run the task using the given model and return the results.""" raise NotImplementedError # Calcualte evaluation metrics and postprocessed data api = HfApi() api.upload_file( path_or_fileobj="results.json", path_in_repo=f"{self.__class__.__name__}/{model.__class__.__name__}/results.json", # Upload to a specific folder repo_id="atomind/mlip-arena", repo_type="dataset", ) def run_nersc(self, model: MLIP): """Run the task using the given model and return the results.""" raise NotImplementedError def get_results(self): """Get the results from the task.""" # fs = HfFileSystem() # files = fs.glob(f"datasets/atomind/mlip-arena/{self.__class__.__name__}/*/*.json") for model, metadata in MODEL_REGISTRY.items(): results = hf_hub_download( repo_id="atomind/mlip-arena", filename="results.json", subfolder=f"{self.__class__.__name__}/{model}", repo_type="dataset", revision=None, ) return results