speech-analysis / app.py
hagenw's picture
Add first version of app
c6c2fd0
raw
history blame
3.86 kB
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
class ModelHead(nn.Module):
r"""Classification head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = ModelHead(config, 1)
self.gender = ModelHead(config, 3)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# load model from hub
device = 0 if torch.cuda.is_available() else "cpu"
model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = AgeGenderModel.from_pretrained(model_name)
def process_func(x: np.ndarray, sampling_rate: int) -> dict:
r"""Predict age and gender or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)
y = torch.hstack([y[1], y[2]])
# convert to numpy
y = y.detach().cpu().numpy()
# convert to dict
y = [
{"score": 100 * y[0][0], "label": "age"},
{"score": y[0][1], "label": "female"},
{"score": y[0][2], "label": "male"},
{"score": y[0][3], "label": "child"},
]
return y
@spaces.GPU
def recognize(file):
if file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(file)
age_gender = process_func(signal, sampling_rate)
return age_gender
demo = gr.Blocks()
outputs = gr.outputs.Label()
title = "audEERING age and gender recognition"
description = (
"Recognize age and gender of a microphone recording or audio file. "
"Demo uses the checkpoint [{model_name}](https://huggingface.co/{model_name})."
)
allow_flagging = "never"
microphone = gr.Interface(
fn=recognize,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=outputs,
title=title,
description=description,
allow_flagging=allow_flagging,
)
file = gr.Interface(
fn=recognize,
inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
outputs=outputs,
title=title,
description=description,
allow_flagging=allow_flagging,
)
with demo:
gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
demo.queue().launch()