Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
•
a441cea
1
Parent(s):
395ee78
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
from typing import Union
|
|
|
4 |
is_spaces = True if os.environ.get("SPACE_ID") else False
|
5 |
|
6 |
if is_spaces:
|
7 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
import spaces
|
9 |
-
from huggingface_hub import whoami
|
10 |
|
11 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
12 |
import sys
|
@@ -37,6 +37,7 @@ if not is_spaces:
|
|
37 |
|
38 |
MAX_IMAGES = 150
|
39 |
|
|
|
40 |
def load_captioning(uploaded_images, concept_sentence):
|
41 |
gr.Info("Images uploaded!")
|
42 |
updates = []
|
@@ -149,6 +150,16 @@ def start_training(
|
|
149 |
):
|
150 |
if not lora_name:
|
151 |
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
print("Started training")
|
153 |
slugged_lora_name = slugify(lora_name)
|
154 |
|
@@ -166,7 +177,11 @@ def start_training(
|
|
166 |
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
167 |
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
168 |
config["config"]["process"][0]["save"]["push_to_hub"] = True
|
169 |
-
|
|
|
|
|
|
|
|
|
170 |
config["config"]["process"][0]["save"]["hf_private"] = True
|
171 |
if concept_sentence:
|
172 |
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
@@ -189,7 +204,7 @@ def start_training(
|
|
189 |
with open(config_path, "w") as f:
|
190 |
yaml.dump(config, f)
|
191 |
if is_spaces:
|
192 |
-
|
193 |
# copy config to dataset_folder as config.yaml
|
194 |
shutil.copy(config_path, dataset_folder + "/config.yaml")
|
195 |
# get location of this script
|
@@ -343,16 +358,14 @@ with gr.Blocks(theme=theme, css=css) as demo:
|
|
343 |
progress_area = gr.Markdown("")
|
344 |
|
345 |
with gr.Tab("Train on your device" if is_spaces else "Instructions"):
|
346 |
-
gr.Markdown(
|
347 |
-
f"""To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!). You'll need ~23GB of VRAM
|
348 |
```bash
|
349 |
-
git clone https://huggingface.co/spaces/
|
350 |
cd flux-lora-ease
|
351 |
-
## Optional, start a venv environment ##
|
352 |
python3 -m venv venv
|
353 |
source venv/bin/activate
|
354 |
# .\venv\Scripts\activate on windows
|
355 |
-
# install torch first
|
356 |
## End of optional ##
|
357 |
pip install -r requirements_local.txt
|
358 |
```
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
from typing import Union
|
4 |
+
from huggingface_hub import whoami
|
5 |
is_spaces = True if os.environ.get("SPACE_ID") else False
|
6 |
|
7 |
if is_spaces:
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
import spaces
|
|
|
10 |
|
11 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
12 |
import sys
|
|
|
37 |
|
38 |
MAX_IMAGES = 150
|
39 |
|
40 |
+
|
41 |
def load_captioning(uploaded_images, concept_sentence):
|
42 |
gr.Info("Images uploaded!")
|
43 |
updates = []
|
|
|
150 |
):
|
151 |
if not lora_name:
|
152 |
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
153 |
+
|
154 |
+
if not is_spaces:
|
155 |
+
try:
|
156 |
+
if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
|
157 |
+
gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
|
158 |
+
else:
|
159 |
+
raise gr.Error(f"You logged in to Hugging Face with not enough permissions, you need a token that allows writing to {whoami()['name']} profile.")
|
160 |
+
except:
|
161 |
+
raise gr.Error(f"You logged in to Hugging Face with not enough permissions, you need a token that allows writing to {whoami()['name']} profile.")
|
162 |
+
|
163 |
print("Started training")
|
164 |
slugged_lora_name = slugify(lora_name)
|
165 |
|
|
|
177 |
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
178 |
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
179 |
config["config"]["process"][0]["save"]["push_to_hub"] = True
|
180 |
+
try:
|
181 |
+
username = whoami()["name"] if not is_spaces else profile.username
|
182 |
+
except:
|
183 |
+
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
|
184 |
+
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
185 |
config["config"]["process"][0]["save"]["hf_private"] = True
|
186 |
if concept_sentence:
|
187 |
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
|
|
204 |
with open(config_path, "w") as f:
|
205 |
yaml.dump(config, f)
|
206 |
if is_spaces:
|
207 |
+
gr.Info("Instantiating Spacerunner...")
|
208 |
# copy config to dataset_folder as config.yaml
|
209 |
shutil.copy(config_path, dataset_folder + "/config.yaml")
|
210 |
# get location of this script
|
|
|
358 |
progress_area = gr.Markdown("")
|
359 |
|
360 |
with gr.Tab("Train on your device" if is_spaces else "Instructions"):
|
361 |
+
gr.Markdown(f"""To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!). You'll need ~23GB of VRAM
|
|
|
362 |
```bash
|
363 |
+
git clone https://huggingface.co/spaces/flux-lora-ease/flux-lora-ease
|
364 |
cd flux-lora-ease
|
365 |
+
## Optional, start a venv environment (install torch first) ##
|
366 |
python3 -m venv venv
|
367 |
source venv/bin/activate
|
368 |
# .\venv\Scripts\activate on windows
|
|
|
369 |
## End of optional ##
|
370 |
pip install -r requirements_local.txt
|
371 |
```
|