import os from huggingface_hub import snapshot_download, delete_repo, metadata_update import uuid import json import yaml import subprocess HF_TOKEN = os.environ.get("HF_TOKEN") HF_DATASET = os.environ.get("DATA_PATH") def download_dataset(hf_dataset_path: str): random_id = str(uuid.uuid4()) snapshot_download( repo_id=hf_dataset_path, token=HF_TOKEN, local_dir=f"/tmp/{random_id}", repo_type="dataset", ) return f"/tmp/{random_id}" def process_dataset(dataset_dir: str): # dataset dir consists of images, config.yaml and a metadata.jsonl (optional) with fields: file_name, prompt # generate .txt files with the same name as the images with the prompt as the content # remove metadata.jsonl # return the path to the processed dataset # check if config.yaml exists if not os.path.exists(os.path.join(dataset_dir, "config.yaml")): raise ValueError("config.yaml does not exist") # check if metadata.jsonl exists if os.path.exists(os.path.join(dataset_dir, "metadata.jsonl")): metadata = [] with open(os.path.join(dataset_dir, "metadata.jsonl"), "r") as f: for line in f: if len(line.strip()) > 0: metadata.append(json.loads(line)) for item in metadata: txt_path = os.path.join(dataset_dir, item["file_name"]) txt_path = txt_path.rsplit(".", 1)[0] + ".txt" with open(txt_path, "w") as f: f.write(item["prompt"]) # remove metadata.jsonl os.remove(os.path.join(dataset_dir, "metadata.jsonl")) with open(os.path.join(dataset_dir, "config.yaml"), "r") as f: config = yaml.safe_load(f) # update config with new dataset config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_dir with open(os.path.join(dataset_dir, "config.yaml"), "w") as f: yaml.dump(config, f) return dataset_dir def run_training(hf_dataset_path: str): dataset_dir = download_dataset(hf_dataset_path) dataset_dir = process_dataset(dataset_dir) # run training commands = "git clone https://github.com/ostris/ai-toolkit.git ai-toolkit && cd ai-toolkit && git submodule update --init --recursive" subprocess.run(commands, shell=True) commands = f"python run.py {os.path.join(dataset_dir, 'config.yaml')}" process = subprocess.Popen(commands, shell=True, cwd="ai-toolkit", env=os.environ) return process, dataset_dir if __name__ == "__main__": process, dataset_dir = run_training(HF_DATASET) process.wait() # Wait for the training process to finish with open(os.path.join(dataset_dir, "config.yaml"), "r") as f: config = yaml.safe_load(f) repo_id = config["config"]["process"][0]["save"]["hf_repo_id"] metadata = { "tags": [ "autotrain", "spacerunner", "text-to-image", "flux", "lora", "diffusers", "template:sd-lora", ] } metadata_update(repo_id, metadata, token=HF_TOKEN, repo_type="model", overwrite=True) delete_repo(HF_DATASET, token=HF_TOKEN, repo_type="dataset", missing_ok=True)