Spaces:
Running
Running
Upload 2 files
Browse files- pages/Fine Tune.py +44 -0
- pages/Host & Deploy.py +42 -0
pages/Fine Tune.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
|
4 |
+
# Streamlit App
|
5 |
+
st.title("AI Model Fine-Tuning π€")
|
6 |
+
|
7 |
+
# Intro
|
8 |
+
st.write("""
|
9 |
+
Welcome to the AI model fine-tuning! Here, we'll take a vanilla AI model and
|
10 |
+
follow the fine-tuning process to adapt it for a specific task. Let's get started!
|
11 |
+
""")
|
12 |
+
|
13 |
+
# Select model type
|
14 |
+
model_type = st.selectbox("Choose a vanilla AI model:", ["BERT", "LLaMa 2", "ResNet", "Transformer"])
|
15 |
+
st.write(f"You've selected the {model_type} model!")
|
16 |
+
|
17 |
+
# Specify dataset
|
18 |
+
dataset_name = st.text_input("Enter the name of the dataset for fine-tuning:", "Knowledgebase-Dataset.csv")
|
19 |
+
if dataset_name:
|
20 |
+
st.write(f"We will use the {dataset_name} dataset for fine-tuning!")
|
21 |
+
|
22 |
+
# Button to start the fine-tuning
|
23 |
+
if st.button("Start Fine-Tuning"):
|
24 |
+
st.write("Fine-tuning started... Please wait!")
|
25 |
+
|
26 |
+
# Simulate progress bar for fine-tuning
|
27 |
+
latest_iteration = st.empty()
|
28 |
+
bar = st.progress(0)
|
29 |
+
for i in range(100):
|
30 |
+
# Update the progress bar with each iteration.
|
31 |
+
latest_iteration.text(f"Fine-tuning progress: {i+1}%")
|
32 |
+
bar.progress(i + 1)
|
33 |
+
time.sleep(0.35)
|
34 |
+
|
35 |
+
st.write("Fine-tuning completed! Your model is now ready to deploy π")
|
36 |
+
|
37 |
+
# Sidebar for additional settings (pretend parameters)
|
38 |
+
st.sidebar.title("Fine-Tuning Settings")
|
39 |
+
learning_rate = st.sidebar.slider("Learning Rate:", 0.001, 0.1, 0.01, 0.001)
|
40 |
+
batch_size = st.sidebar.slider("Batch Size:", 8, 128, 32)
|
41 |
+
epochs = st.sidebar.slider("Number of Epochs:", 1, 10, 3)
|
42 |
+
st.sidebar.write(f"Learning Rate: {learning_rate}")
|
43 |
+
st.sidebar.write(f"Batch Size: {batch_size}")
|
44 |
+
st.sidebar.write(f"Epochs: {epochs}")
|
pages/Host & Deploy.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
|
4 |
+
# Streamlit App
|
5 |
+
st.title("AI Model Deployment π")
|
6 |
+
|
7 |
+
# Intro
|
8 |
+
st.write("""
|
9 |
+
Welcome to the AI model deployment flow! Here, we'll follow the process of deploying
|
10 |
+
your fine-tuned AI model to one of the cloud instances. Let's begin!
|
11 |
+
""")
|
12 |
+
|
13 |
+
# Select cloud provider
|
14 |
+
cloud_provider = st.selectbox("Choose a cloud provider:", ["AWS EC2", "Google Cloud VM", "Azure VM"])
|
15 |
+
st.write(f"You've selected {cloud_provider}!")
|
16 |
+
|
17 |
+
# Specify model details
|
18 |
+
model_name = st.text_input("Enter your AI model name:", "MySpecialModel")
|
19 |
+
if model_name:
|
20 |
+
st.write(f"We'll deploy the model named: {model_name}")
|
21 |
+
|
22 |
+
# Button to start the deployment
|
23 |
+
if st.button("Start Deployment"):
|
24 |
+
st.write("Deployment started... Please wait!")
|
25 |
+
|
26 |
+
# Simulate progress bar for deployment
|
27 |
+
latest_iteration = st.empty()
|
28 |
+
bar = st.progress(0)
|
29 |
+
for i in range(100):
|
30 |
+
# Update the progress bar with each iteration.
|
31 |
+
latest_iteration.text(f"Deployment progress: {i+1}%")
|
32 |
+
bar.progress(i + 1)
|
33 |
+
time.sleep(0.05)
|
34 |
+
|
35 |
+
st.write(f"Deployment completed! Your model {model_name} is now live on {cloud_provider} π")
|
36 |
+
|
37 |
+
# Sidebar for additional settings (pretend configurations)
|
38 |
+
st.sidebar.title("Deployment Settings")
|
39 |
+
instance_type = st.sidebar.selectbox("Instance Type:", ["Standard", "High Memory", "High CPU", "GPU"])
|
40 |
+
storage_option = st.sidebar.slider("Storage Size (in GB):", 10, 500, 50)
|
41 |
+
st.sidebar.write(f"Instance Type: {instance_type}")
|
42 |
+
st.sidebar.write(f"Storage Size: {storage_option} GB")
|