Spaces:
Runtime error
Runtime error
File size: 53,451 Bytes
93bff19 53e1c4e 93bff19 d8ff977 5bb19ae 34b6005 43d868e db79f56 a857b87 2d4f821 55d7401 b230746 199b3cc 55d7401 753f915 6afbe45 753f915 55d7401 4260b75 f615d30 b230746 181af13 f615d30 64ac15e b230746 64ac15e b230746 64ac15e da646d0 181af13 da646d0 2d4f821 24c60de 9eb74bf 24c60de 2d4f821 d4e9457 2974a9b d4e9457 2974a9b d4e9457 2d4f821 c7521e9 2d4f821 67f9944 71769f7 181af13 71769f7 e09f106 d862791 e09f106 71769f7 67f9944 3f565e1 652dc4c 67f9944 c1675ec 67f9944 181af13 67f9944 181af13 67f9944 afc4b4f c7521e9 afc4b4f 67f9944 c7521e9 afc4b4f 25d2245 afc4b4f 25d2245 c80c16b a032262 25d2245 a032262 08208c3 a032262 08208c3 a032262 c80c16b a032262 25d2245 ece76b0 8166716 ece76b0 8166716 ece76b0 8166716 ece76b0 8166716 05f994e 77129c9 df426d6 0f3fdad 2974a9b 8fb3b51 2974a9b 8fb3b51 2974a9b 05f994e 2974a9b 05f994e 2974a9b 701f012 2974a9b 8fb3b51 0f3fdad 77129c9 693209f 8be87a8 df6e848 2955dfa 2a43c3b fd80250 fd62e11 5b3dda4 9b796f0 c10ecc1 1483bb1 c10ecc1 13af9c2 f6e4799 c7521e9 cf17c6e f6e4799 f4d39b3 f6e4799 f4d39b3 f6e4799 8c940ba c7521e9 9b796f0 8c940ba 54376c6 628d717 8c940ba 628d717 8c940ba 9b796f0 bd031a7 9b796f0 c7521e9 9b796f0 f504bcb 9b796f0 263e41a 76a257f 263e41a 76a257f 263e41a ce872b6 263e41a 7606437 263e41a c7521e9 263e41a c7521e9 263e41a c7521e9 263e41a 264f77f 263e41a 264f77f 263e41a 264f77f 263e41a e07e606 3c2f20e ce872b6 717f278 b1ea756 717f278 e07e606 717f278 e07e606 b1ea756 e07e606 b1ea756 717f278 263e41a 53e1c4e 263e41a ce872b6 263e41a ce872b6 263e41a e0a37a4 83d0e33 4d6ccda 8b1291e 7cf7472 8b1291e 3be9ecb 8b1291e 83d0e33 66154c1 83d0e33 4d6ccda 83d0e33 263e41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 |
import streamlit as st
import streamlit.components.v1 as components
import os
import json
import random
import base64
import glob
import math
import openai
import pytz
import re
import requests
import textract
import time
import zipfile
import huggingface_hub
import dotenv
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
from PIL import Image
from urllib.parse import quote # Ensure this import is included
# Set initial page and app customization and configuration -------------------------
st.set_page_config(
page_title="๐๐GraphicNovelAI",
page_icon="๐๐",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/spaces/awacke1/GraphicAINovel",
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
}
)
# Title, Base Content and Help/About
st.markdown('''### ๐โจ๐ GraphicNovelAI ''')
# Base Content Prompts for App, for App Product, and App Product Code
PromptPrefix = 'Create a graphic novel story with streamlit markdown outlines and tables with appropriate emojis for graphic novel rules defining the method steps of play. Use story structure architect rules using plan, structure and top three dramatic situations matching the theme for topic of '
PromptPrefix2 = 'Create a streamlit python user app with full code listing to create a UI implementing the plans, structure, situations and tables as python functions creating a game which operates like choose your own adventure graphic novel rules and creates a compelling fun story using streamlit to create user interface elements like emoji buttons, sliders, drop downs, and data interfaces like dataframes to show tables, session_state to track inventory, character advancement and experience, locations, file_uploader to allow the user to add images which are saved and referenced shown in gallery, camera_input to take character picture, on_change = function callbacks with continual running plots that change when you change data or click a button, randomness and dice rolls using emojis and st.markdown, st.expander for groupings and clusters of things, st.columns and other UI controls in streamlit as a game. Create inline data tables and list dictionaries for entities implemented as variables for the game rule entities and stats. Design it as a fun data driven game app and show full python code listing for this ruleset and thematic story plot line: '
PromptPrefix3 = 'Create a HTML5 aframe and javascript app using appropriate libraries to create a simulation and use more advanced libraries like aframe to render 3d scenes creating moving entities that stay within a bounding box but show text and animation in 3d for inventory, components and story entities. Show full code listing. Add a list of new random entities say 3 of a few different types to any list appropriately and use emojis to make things easier and fun to read. Use appropriate emojis in labels. Create the UI to implement storytelling in the style of a dungeon master, with features using three emoji appropriate text plot twists and recurring interesting funny fascinating and complex almost poetic named characters with genius traits and file IO, randomness, ten point choice lists, math distribution tradeoffs, witty humorous dilemnas with emoji , rewards, variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic:'
with st.expander("Help / About ๐", expanded=False):
st.markdown('''
- ๐ **Unlock Plots:** Elevate your vocabulary with AI. Turns plots into thrilling experiences.
- ๐ **Features:** Creates extensive glossaries & exciting challenges.
- ๐งโโ๏ธ **Experience:** Become a graphic novel plot wizard, boost your language skills.
- ๐ **Query Use:** Input `?q=Palindrome` or `?query=Anagram` in URL for new challenges.
''')
# Aaron's Intelligent Style Guide for AI Graphic Novel Writers
parts_of_speech = [
{"type": "Noun", "description": "Person, place, thing, or idea", "example": "Hero, city, spaceship, justice"},
{"type": "Verb", "description": "Action or state of being", "example": "Fight, transform, is, become"},
{"type": "Adjective", "description": "Describes a noun", "example": "Mysterious, ancient, powerful, dark"},
{"type": "Adverb", "description": "Modifies verbs, adjectives, or other adverbs", "example": "Mysteriously, very, suddenly, heroically"},
{"type": "Conjunction", "description": "Connects clauses, sentences, or words", "example": "And, but, or, yet"},
{"type": "Interjection", "description": "Expresses emotion", "example": "Wow!, Ouch!, Haha!, Shhh!"},
{"type": "Idiom", "description": "Phrase with a figurative meaning", "example": "Break a leg, Spill the beans, Hit the road"},
{"type": "Symbolism", "description": "Objects, figures, or colors used to represent ideas or concepts", "example": "A rose for love, a storm for chaos"},
{"type": "Theme", "description": "Underlying message or main idea", "example": "The quest for identity, the battle between good and evil"},
{"type": "Motif", "description": "Recurring element that has symbolic significance", "example": "Repeated imagery of masks to signify identity"}
]
language_structures = [
{"type": "Glossary", "description": "Vocabulary Reference: List of terms and their definitions", "example": "Villain: The antagonist of the story"},
{"type": "Dialogue", "description": "Conversational Text: Characters' spoken words", "example": "We must act now! exclaimed the hero"},
{"type": "Narration", "description": "Storytelling Text: Text that tells the story", "example": "The city had never seen such despair"},
{"type": "Captions", "description": "Descriptive Text: Describes scene, setting, or action", "example": "New York, 2050. A city in turmoil"},
{"type": "Sound Effects", "description": "Auditory Text: Words that mimic sounds", "example": "BOOM! The spaceship landed"},
{"type": "Thought Bubbles", "description": "Internal Monologue Text: Characters' thoughts", "example": "I wonder if they know my secret"},
{"type": "Panel Transitions", "description": "Visual Storytelling Technique: Movement between scenes or ideas", "example": "Meanwhile, across the galaxy..."},
{"type": "Character Development", "description": "Evolution of characters throughout the story", "example": "From a timid schoolgirl to a fearless warrior"},
{"type": "Plot Twists", "description": "Unexpected changes in the story direction", "example": "The hero discovers their enemy is their sibling"},
{"type": "Backstory", "description": "Historical or background context of characters or setting", "example": "Once a celebrated hero, now a forgotten legend"}
]
# Assuming 'parts_of_speech' and 'language_structures' are defined as above
def display_elements(elements, title):
st.markdown(f"## {title}")
for element in elements:
st.markdown(f"""
- **Type**: {element['type']}
- **Description**: {element['description']}
- **Example**: {element['example']}
""")
# process sets:
st.title("Graphic Novel Creation Toolkit")
display_elements(parts_of_speech, "Parts of Speech for Dramatic Situations")
display_elements(language_structures, "Language Structures for Dramatic Situations")
# MoE Context Glossary
roleplaying_glossary = {
"๐จโ๐ฉโ๐งโ๐ฆ Top Graphic Novel Plot Themes": {
"Epic Fantasy": [
"Ancient prophecies and mystical artifacts",
"Epic battles between good and evil",
"Complex world-building with diverse cultures",
"Journey of a reluctant hero",
"Alliance of unlikely companions",
"Betrayal and redemption arcs",
"Magic systems and mythical creatures",
"Climactic confrontation with a dark lord"
],
"Superhero Sagas": [
"Origin stories of heroes and villains",
"Struggle with personal identity and responsibility",
"Formation of superhero teams",
"Epic battles to save the city/world",
"Moral dilemmas and ethical questions",
"Interdimensional threats and cosmic wars",
"Evolution of powers and discovery of new abilities",
"Legacy heroes and passing of the mantle"
],
"Post-Apocalyptic Survival": [
"Survival in a world after a global catastrophe",
"Rebuilding society from the ashes",
"Conflict between surviving factions",
"Quests for scarce resources",
"Encounters with mutated creatures",
"Moral ambiguity and survival ethics",
"Exploration of human resilience",
"Discovery of a safe haven or cure"
],
"Science Fiction and Space Opera": [
"Exploration of distant galaxies",
"Conflict between alien species",
"Advanced technology and space travel",
"Utopian and dystopian societies",
"Time travel and alternate realities",
"Artificial intelligence and robotics",
"Quests for knowledge and discovery",
"Rebellion against oppressive regimes"
],
"Horror and Supernatural": [
"Haunted locations and ghost stories",
"Battles against demonic forces",
"Survival horror and psychological terror",
"Folklore and urban legends",
"Vampires, werewolves, and other monsters",
"Occult practices and dark magic",
"Apocalyptic and Lovecraftian themes",
"Investigations into the unknown"
],
"Romance and Relationship Dramas": [
"Complex romantic entanglements",
"Struggles with identity and societal expectations",
"Heartbreak, healing, and growth",
"Forbidden love and star-crossed lovers",
"Contemporary relationship dynamics",
"Cultural and social differences",
"Self-discovery and personal fulfillment",
"Romantic comedies and tragedies"
]
}
}
# Set initial page and app configs ------------------------------------------
# Function to display the entire glossary in a grid format with links
def display_glossary_grid(roleplaying_glossary):
search_urls = {
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}",
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
"๐ฒ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(k)}", # this url plus query!
"๐": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix)}{quote(k)}", # this url plus query!
"๐": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix2)}{quote(k)}", # this url plus query!
"๐ฌ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix3)}{quote(k)}", # this url plus query!
}
for category, details in roleplaying_glossary.items():
st.write(f"### {category}")
cols = st.columns(len(details)) # Create dynamic columns based on the number of games
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"{term} {links_md}", unsafe_allow_html=True)
def display_glossary_entity(k):
search_urls = {
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}",
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
"๐ฒ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(k)}", # this url plus query!
"๐": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix)}{quote(k)}", # this url plus query!
"๐": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix2)}{quote(k)}", # this url plus query!
"๐ฌ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix3)}{quote(k)}", # this url plus query!
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"{k} {links_md}", unsafe_allow_html=True)
# HTML5 based Speech Synthesis (Text to Speech in Browser)
@st.cache_resource
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>๐ Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">๐ Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
# 9. Chat History File Sidebar
@st.cache_resource
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
elif ext == '.wav':
mime_type = 'audio/wav'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
@st.cache_resource
def create_zip_of_files(files):
#zip_name = "all_files.zip"
zip_name = "GraphicAINovels.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
def FileSidebar():
# ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------
# Compose a file sidebar of markdown md files:
all_files = glob.glob("*.md")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
if st.sidebar.button("๐ Delete All Text"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
if st.sidebar.button("โฌ๏ธ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("๐", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("๐", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("๐", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
try:
if st.button("๐", key="filecontentssearch"):
search_glossary(file_content_area)
except:
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
if next_action=='md':
st.markdown(file_contents)
buttonlabel = '๐Run'
if st.button(key='RunWithLlamaandGPT', label = buttonlabel):
user_prompt = file_contents
try:
search_glossary(file_contents)
except:
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = file_contents
try:
search_glossary(file_contents)
except:
st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
# ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------
FileSidebar()
# ---- Art Card Sidebar with Random Selection of image:
@st.cache_resource
def get_image_as_base64(url):
response = requests.get(url)
if response.status_code == 200:
# Convert the image to base64
return base64.b64encode(response.content).decode("utf-8")
else:
return None
@st.cache_resource
def create_download_link(filename, base64_str):
href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>'
return href
# List of image URLs
image_urls = [
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/W1omJItftG3OkW9sj-Ckb.png",
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/Djx-k4WOxzlXEQPzllP3r.png"
]
UseSidebarArtCard=True
if UseSidebarArtCard:
# Select a random URL from the list
selected_image_url = random.choice(image_urls)
# Get the base64 encoded string of the selected image
# st.write(selected_image_url)
try:
selected_image_base64 = get_image_as_base64(selected_image_url)
if selected_image_base64 is not None:
with st.sidebar:
#st.markdown("""### Graphic Novel AI""")
# Display the image
st.markdown(f"![image](data:image/png;base64,{selected_image_base64})")
# Create and display the download link
#download_link = create_download_link("downloaded_image.png", selected_image_base64)
#st.markdown(download_link, unsafe_allow_html=True)
else:
st.sidebar.write("Failed to load the image.")
except:
st.write('Sidebar Fail - Check your Images')
# ---- Art Card Sidebar with random selection of image.
# Ensure the directory for storing scores exists
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
# Function to generate a unique key for each button, including an emoji
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
# Function to increment and save score
def update_score(key, increment=1):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += 1
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
# Function to load score
def load_score(key):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
@st.cache_resource
def search_glossary(query):
for category, terms in roleplaying_glossary.items():
if query.lower() in (term.lower() for term in terms):
st.markdown(f"#### {category}")
st.write(f"- {query}")
all=""
#query2 = PromptPrefix + query
query2 = query
response = chat_with_model(query2)
all = query + ' ' + response
filename = generate_filename(response, "md")
create_file(filename, query, response, should_save)
#query3 = PromptPrefix2 + query + ' for story outline of method steps: ' + response # Add prompt preface for coding task behavior
#response2 = chat_with_model(query3)
#query4 = PromptPrefix3 + query + ' using this streamlit python programspecification to define features. Create entities for each variable and generate UI with HTML5 and JS that matches the streamlit program: ' + response2 # Add prompt preface for coding task behavior
#response3 = chat_with_model(query4)
#all = query + ' ' + response + ' ' + response2 + ' ' + response3
#filename = generate_filename(all, "md")
#create_file(filename, query, all, should_save)
SpeechSynthesis(all)
return all
# Function to display the glossary in a structured format
def display_glossary(glossary, area):
if area in glossary:
st.subheader(f"๐ Glossary for {area}")
for game, terms in glossary[area].items():
st.markdown(f"### {game}")
for idx, term in enumerate(terms, start=1):
st.write(f"{idx}. {term}")
game_emojis = {
"Dungeons and Dragons": "๐",
"Call of Cthulhu": "๐",
"GURPS": "๐ฒ",
"Pathfinder": "๐บ๏ธ",
"Kindred of the East": "๐
",
"Changeling": "๐",
}
topic_emojis = {
"Core Rulebooks": "๐",
"Maps & Settings": "๐บ๏ธ",
"Game Mechanics & Tools": "โ๏ธ",
"Monsters & Adversaries": "๐น",
"Campaigns & Adventures": "๐",
"Creatives & Assets": "๐จ",
"Game Master Resources": "๐ ๏ธ",
"Lore & Background": "๐",
"Character Development": "๐ง",
"Homebrew Content": "๐ง",
"General Topics": "๐",
}
# Adjusted display_buttons_with_scores function
def display_buttons_with_scores():
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "๐") # Default to search icon if no match
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "๐ฎ") # Default to generic game controller if no match
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score = load_score(key)
if st.button(f"{game_emoji} {term} {score}", key=key):
update_score(key)
# Create a dynamic query incorporating emojis and formatting for clarity
query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**"
# ----------------------------------------------------------------------------------------------
#query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and emoji laden user interface with labels with the entity name and emojis in all labels with a set of streamlit UI components with drop down lists and dataframes and buttons with expander and sidebar for the app to run the data as default values mostly in text boxes. Feature a 3 point outline sith 3 subpoints each where each line has about six words describing this and also contain appropriate emoji for creating sumamry of all aspeccts of this topic. an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
response = search_glossary(query_prefix + query_body)
def fetch_wikipedia_summary(keyword):
# Placeholder function for fetching Wikipedia summaries
# In a real app, you might use requests to fetch from the Wikipedia API
return f"Summary for {keyword}. For more information, visit Wikipedia."
def create_search_url_youtube(keyword):
base_url = "https://www.youtube.com/results?search_query="
return base_url + keyword.replace(' ', '+')
def create_search_url_bing(keyword):
base_url = "https://www.bing.com/search?q="
return base_url + keyword.replace(' ', '+')
def create_search_url_wikipedia(keyword):
base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search="
return base_url + keyword.replace(' ', '+')
def create_search_url_google(keyword):
base_url = "https://www.google.com/search?q="
return base_url + keyword.replace(' ', '+')
def create_search_url_ai(keyword):
base_url = "https://huggingface.co/spaces/awacke1/GraphicAINovel?q="
return base_url + keyword.replace(' ', '+')
@st.cache_resource
def display_videos_and_links():
video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
if not video_files:
st.write("No MP4 videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(2) # Define 2 columns outside the loop
col_index = 0 # Initialize column index
for video_file in video_files_sorted:
with cols[col_index % 2]: # Use modulo 2 to alternate between the first and second column
# Embedding video with autoplay and loop using HTML
#video_html = ("""<video width="100%" loop autoplay> <source src="{video_file}" type="video/mp4">Your browser does not support the video tag.</video>""")
#st.markdown(video_html, unsafe_allow_html=True)
k = video_file.split('.')[0] # Assumes keyword is the file name without extension
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
col_index += 1 # Increment column index to place the next video in the next column
@st.cache_resource
def display_images_and_wikipedia_summaries():
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
grid_sizes = [len(f.split('.')[0]) for f in image_files_sorted]
col_sizes = ['small' if size <= 4 else 'medium' if size <= 8 else 'large' for size in grid_sizes]
num_columns_map = {"small": 4, "medium": 3, "large": 2}
current_grid_size = 0
for image_file, col_size in zip(image_files_sorted, col_sizes):
if current_grid_size != num_columns_map[col_size]:
cols = st.columns(num_columns_map[col_size])
current_grid_size = num_columns_map[col_size]
col_index = 0
with cols[col_index % current_grid_size]:
image = Image.open(image_file)
st.image(image, caption=image_file, use_column_width=True)
k = image_file.split('.')[0] # Assumes keyword is the file name without extension
display_glossary_entity(k)
def get_all_query_params(key):
return st.query_params().get(key, [])
def clear_query_params():
st.query_params()
# Function to display content or image based on a query
@st.cache_resource
def display_content_or_image(query):
for category, terms in transhuman_glossary.items():
for term in terms:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True # Return after finding and displaying the first match
image_dir = "images" # Example directory where images are stored
image_path = f"{image_dir}/{query}.png" # Construct image path with query
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
# 1. Constants and Top Level UI Variables
# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
# Meta's Original - Chat HF Free Version:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"..."
should_save = st.sidebar.checkbox("๐พ Save", value=True, help="Save your session data.")
# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
try:
endpoint_url = API_URL
hf_token = API_KEY
#st.write('Running client ' + endpoint_url)
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
allresults=''
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write('Stream llm issue')
SpeechSynthesis(result)
return result
except:
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
# 4. Run query with payload
@st.cache_resource
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
st.markdown(response.json())
return response.json()
def get_output(prompt):
return query({"inputs": prompt})
# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
openai.api_key = openai_key
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write('STT transcript ' + OPENAI_API_URL)
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
filename = generate_filename(transcript, 'txt')
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder(key='audio_recorder')
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
# 8. File creator that interprets type and creates output file for text, markdown and code
@st.cache_resource
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
base_filename, ext = os.path.splitext(filename)
if ext in ['.txt', '.htm', '.md']:
with open(f"{base_filename}.md", 'w') as file:
try:
content = prompt.strip() + '\r\n' + response
file.write(content)
except:
st.write('.')
#has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
#has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
#if has_python_code:
# python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
# with open(f"{base_filename}-Code.py", 'w') as file:
# file.write(python_code)
# with open(f"{base_filename}.md", 'w') as file:
# content = prompt.strip() + '\r\n' + response
# file.write(content)
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
@st.cache_resource
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'): # gpt-4-0125-preview gpt-3.5-turbo
#def chat_with_model(prompt, document_section='', model_choice='gpt-4-0125-preview'): # gpt-4-0125-preview gpt-3.5-turbo
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
for chunk in openai.ChatCompletion.create(model=model_choice, messages=conversation, temperature=0.5, stream=True):
collected_chunks.append(chunk)
chunk_message = chunk['choices'][0]['delta']
collected_messages.append(chunk_message)
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
return full_reply_content
@st.cache_resource
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): # gpt-4-0125-preview gpt-3.5-turbo
#def chat_with_file_contents(prompt, file_content, model_choice='gpt-4-0125-preview'): # gpt-4-0125-preview gpt-3.5-turbo
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def extract_mime_type(file):
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
st.write(f"File type extension: {file_extension}")
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def process_user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
filename = generate_filename(user_question, 'txt')
response = message.content
user_prompt = user_question
create_file(filename, user_prompt, response, should_save)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk))
return chunks
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
HF_KEY = st.secrets['HF_KEY']
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "audio/wav"
}
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL_IE, headers=headers, data=data)
return response.json()
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 15. Audio recorder to Wav file
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
# 16. Speech transcription to file output
def transcribe_audio(filename):
output = query(filename)
return output
def whisper_main():
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcription = transcribe_audio(filename)
try:
transcript = transcription['text']
st.write(transcript)
except:
transcript=''
st.write(transcript)
st.write('Reasoning with your inputs..')
response = chat_with_model(transcript)
st.write('Response:')
st.write(response)
filename = generate_filename(response, "txt")
create_file(filename, transcript, response, should_save)
# Whisper to Llama:
response = StreamLLMChatResponse(transcript)
filename_txt = generate_filename(transcript, "md")
create_file(filename_txt, transcript, response, should_save)
filename_wav = filename_txt.replace('.txt', '.wav')
import shutil
try:
if os.path.exists(filename):
shutil.copyfile(filename, filename_wav)
except:
st.write('.')
if os.path.exists(filename):
os.remove(filename)
# 17. Main
def main():
prompt = PromptPrefix2
with st.expander("Prompts ๐", expanded=False):
example_input = st.text_input("Enter your prompt text:", value=prompt, help="Enter text to get a response.")
if st.button("Run Prompt", help="Click to run."):
try:
response=StreamLLMChatResponse(example_input)
create_file(filename, example_input, response, should_save)
except:
st.write('model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.')
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("๐๏ธ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, section, model_choice)
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('๐ฌ Chat'):
st.write('Reasoning with your inputs...')
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
full_response += response + '\n' # Combine the responses
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
# Function to encode file to base64
def get_base64_encoded_file(file_path):
with open(file_path, "rb") as file:
return base64.b64encode(file.read()).decode()
# Function to create a download link
def get_audio_download_link(file_path):
base64_file = get_base64_encoded_file(file_path)
return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">โฌ๏ธ Download Audio</a>'
# Compose a file sidebar of past encounters
all_files = glob.glob("*.wav")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
filekey = 'delall'
if st.sidebar.button("๐ Delete All Audio", key=filekey):
for file in all_files:
os.remove(file)
st.experimental_rerun()
for file in all_files:
col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed
with col1:
st.markdown(file)
if st.button("๐ต", key="play_" + file): # play emoji button
audio_file = open(file, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
#st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
#st.text_input(label="", value=file)
with col2:
if st.button("๐", key="delete_" + file):
os.remove(file)
st.experimental_rerun()
GiveFeedback=False
if GiveFeedback:
with st.expander("Give your feedback ๐", expanded=False):
feedback = st.radio("Step 8: Give your feedback", ("๐ Upvote", "๐ Downvote"))
if feedback == "๐ Upvote":
st.write("You upvoted ๐. Thank you for your feedback!")
else:
st.write("You downvoted ๐. Thank you for your feedback!")
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)
try:
query_params = st.query_params
query = (query_params.get('q') or query_params.get('query') or [''])
if query: search_glossary(query)
except:
st.markdown(' ')
# Display the glossary grid
st.markdown("### ๐ฒ๐บ๏ธ Graphic Novel Gallery")
display_videos_and_links() # Video Jump Grid
display_images_and_wikipedia_summaries() # Image Jump Grid
display_glossary_grid(roleplaying_glossary) # Word Glossary Jump Grid
display_buttons_with_scores() # Feedback Jump Grid
if 'action' in st.query_params:
action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter
if action == 'show_message':
st.success("Showing a message because 'action=show_message' was found in the URL.")
elif action == 'clear':
clear_query_params()
st.experimental_rerun()
# Handling repeated keys
if 'multi' in st.query_params:
multi_values = get_all_query_params('multi')
st.write("Values for 'multi':", multi_values)
# Manual entry for demonstration
st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")
if 'query' in st.query_params:
query = st.query_params['query'][0] # Get the query parameter
# Display content or image based on the query
display_content_or_image(query)
# Add a clear query parameters button for convenience
if st.button("Clear Query Parameters", key='ClearQueryParams'):
# This will clear the browser URL's query parameters
st.experimental_set_query_params
st.experimental_rerun()
# 18. Run AI Pipeline
if __name__ == "__main__":
whisper_main()
main() |