heheyas
init
cfb7702
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import nvdiffrast.torch as dr
import kiui
from kiui.mesh import Mesh
import json
from pathlib import Path
import tqdm
from PIL import Image
from torchvision.transforms.functional import to_tensor
from torchvision.utils import save_image
import trimesh
from mediapy import write_image, write_video
from einops import rearrange
from kiui.op import uv_padding, safe_normalize, inverse_sigmoid
from kiui.cam import orbit_camera, get_perspective
from torchmetrics.image import LearnedPerceptualImagePatchSimilarity
from mesh import Mesh
from mediapy import read_video
import tyro
from datasets.v3d import get_uniform_poses
class Refiner(nn.Module):
def __init__(self, mesh_filename, video, num_opt=4, lpips: float = 0.0) -> None:
super().__init__()
self.output_size = 512
znear = 0.1
zfar = 10
self.mesh = Mesh.load_obj(mesh_filename)
# self.mesh.v[..., 1], self.mesh.v[..., 2] = (
# self.mesh.v[..., 2],
# self.mesh.v[..., 1],
# )
self.glctx = dr.RasterizeGLContext()
self.device = torch.device("cuda")
self.lpips_meter = LearnedPerceptualImagePatchSimilarity(
net_type="vgg", normalize=True
).to(self.device)
self.lpips = lpips
fov = 60
frames = read_video(video)
self.name = Path(video).stem
frames = frames.astype(np.float32) / 255.0
frames = np.moveaxis(frames, -1, 1)
num_frames, h, w, c = frames.shape
self.poses = get_uniform_poses(num_frames, 2.0, 0.0, opengl=True)
frames = frames.astype(np.float32) / 255.0
self.image_gt = torch.from_numpy(frames).to(self.device)
self.n_frames = len(self.poses)
self.opt_frames = np.linspace(0, self.n_frames, num_opt + 1)[:num_opt].astype(
int
)
print(self.opt_frames)
# gs renderer
self.tan_half_fov = np.tan(0.5 * np.deg2rad(fov))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=self.device)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (zfar + znear) / (zfar - znear)
self.proj_matrix[3, 2] = -(zfar * znear) / (zfar - znear)
self.proj_matrix[2, 3] = 1
self.glctx = dr.RasterizeGLContext()
self.proj = torch.from_numpy(get_perspective(fov)).float().to(self.device)
self.v = self.mesh.v.contiguous().float().to(self.device)
self.f = self.mesh.f.contiguous().int().to(self.device)
self.vc = self.mesh.vc.contiguous().float().to(self.device)
# self.vt = self.mesh.vt
# self.ft = self.mesh.ft
def render_normal(self, pose):
h = w = self.output_size
v = self.v
f = self.f
if not hasattr(self.mesh, "vn") or self.mesh.vn is None:
self.mesh.auto_normal()
vc = self.mesh.vn.to(self.device)
pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
vc = torch.einsum("ij, kj -> ki", pose[:3, :3].T, vc).contiguous()
# get v_clip and render rgb
v_cam = (
torch.matmul(
F.pad(v, pad=(0, 1), mode="constant", value=1.0), torch.inverse(pose).T
)
.float()
.unsqueeze(0)
)
v_clip = v_cam @ self.proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, f, (h, w))
alpha = torch.clamp(rast[..., -1:], 0, 1).contiguous() # [1, H, W, 1]
alpha = (
dr.antialias(alpha, rast, v_clip, f).clamp(0, 1).squeeze(-1).squeeze(0)
) # [H, W] important to enable gradients!
# color, texc_db = dr.interpolate(
# self.vc.unsqueeze(0), rast, f, rast_db=rast_db, diff_attrs="all"
# )
color, texc_db = dr.interpolate(vc.unsqueeze(0), rast, f)
color = dr.antialias(color, rast, v_clip, f)
# image = torch.sigmoid(
# dr.texture(self.albedo.unsqueeze(0), texc, uv_da=texc_db)
# ) # [1, H, W, 3]
image = color.view(1, h, w, 3)
# image = dr.antialias(image, rast, v_clip, f).clamp(0, 1)
image = image.squeeze(0).permute(2, 0, 1).contiguous() # [3, H, W]
image = (image + 1) / 2.0
image = alpha * image + (1 - alpha)
return image, alpha
def render_mesh(self, pose, use_sigmoid=True):
h = w = self.output_size
v = self.v
f = self.f
if use_sigmoid:
vc = torch.sigmoid(self.vc)
else:
vc = self.vc
pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
# get v_clip and render rgb
v_cam = (
torch.matmul(
F.pad(v, pad=(0, 1), mode="constant", value=1.0), torch.inverse(pose).T
)
.float()
.unsqueeze(0)
)
v_clip = v_cam @ self.proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, f, (h, w))
alpha = torch.clamp(rast[..., -1:], 0, 1).contiguous() # [1, H, W, 1]
alpha = (
dr.antialias(alpha, rast, v_clip, f).clamp(0, 1).squeeze(-1).squeeze(0)
) # [H, W] important to enable gradients!
# color, texc_db = dr.interpolate(
# self.vc.unsqueeze(0), rast, f, rast_db=rast_db, diff_attrs="all"
# )
color, texc_db = dr.interpolate(vc.unsqueeze(0), rast, f)
color = dr.antialias(color, rast, v_clip, f)
# image = torch.sigmoid(
# dr.texture(self.albedo.unsqueeze(0), texc, uv_da=texc_db)
# ) # [1, H, W, 3]
image = color.view(1, h, w, 3)
# image = dr.antialias(image, rast, v_clip, f).clamp(0, 1)
image = image.squeeze(0).permute(2, 0, 1).contiguous() # [3, H, W]
image = alpha * image + (1 - alpha)
return image, alpha
def refine_texture(self, texture_resolution: int = 512, iters: int = 5000):
h = w = texture_resolution
albedo = torch.ones(h * w, 3, device=self.device, dtype=torch.float32) * 0.5
albedo = albedo.view(h, w, -1)
vc_original = self.vc.clone()
self.vc = nn.Parameter(inverse_sigmoid(vc_original)).to(self.device)
optimizer = torch.optim.Adam(
[
{"params": self.vc, "lr": 1e-3},
]
)
pbar = tqdm.trange(iters)
for i in pbar:
index = np.random.choice(self.opt_frames)
pose = self.poses[index]
image_gt = self.image_gt[index]
image_pred, _ = self.render_mesh(pose)
# if i % 1000 == 0:
# save_image(image_pred, f"tmp/image_pred_{i}.png")
# save_image(image_gt, f"tmp/image_gt_{i}.png")
loss = F.mse_loss(image_pred, image_gt)
if self.lpips > 0.0:
loss += (
self.lpips_meter(
image_gt.clamp(0, 1)[None], image_pred.clamp(0, 1)[None]
)
* self.lpips
)
# * 10.0
loss.backward()
optimizer.step()
optimizer.zero_grad()
pbar.set_description(f"MSE = {loss.item():.6f}")
@torch.no_grad()
def render_spiral(self):
images = []
for i, pose in enumerate(self.poses):
image, _ = self.render_mesh(pose, use_sigmoid=False)
images.append(image)
images = torch.stack(images)
images = images.cpu().numpy()
images = rearrange(images, "b c h w -> b h w c")
if not Path("renders").exists():
Path("renders").mkdir(parents=True, exist_ok=True)
write_video(f"renders/{self.name}.mp4", images, fps=3)
@torch.no_grad()
def render_normal_spiral(self):
images = []
for i, pose in enumerate(self.poses):
image, _ = self.render_normal(pose)
images.append(image)
images = torch.stack(images)
images = images.cpu().numpy()
images = rearrange(images, "b c h w -> b h w c")
Path("renders").mkdir(exist_ok=True, parents=True)
write_video(f"renders/{self.name}_normal.mp4", images, fps=3)
def export(self, filename):
mesh = trimesh.Trimesh(
vertices=self.mesh.v.cpu().numpy(),
faces=self.mesh.f.cpu().numpy(),
vertex_colors=torch.sigmoid(self.vc.detach()).cpu().numpy(),
)
self.vc.data = torch.sigmoid(self.vc.detach())
trimesh.repair.fix_inversion(mesh)
mesh.export(filename)
def do_refine(
mesh: str,
scene: str,
num_opt: int = 4,
iters: int = 2000,
skip_refine: bool = False,
render_normal: bool = True,
lpips: float = 1.0,
):
refiner = Refiner(
# "tmp/corgi_size_1.obj",
mesh,
scene,
num_opt=num_opt,
lpips=lpips,
)
if not skip_refine:
refiner.refine_texture(512, iters)
save_path = Path("refined") / f"{Path(scene).stem}.obj"
if not save_path.parent.exists():
save_path.parent.mkdir(exist_ok=True, parents=True)
refiner.export(str(save_path))
refiner.render_spiral()
if render_normal:
refiner.render_normal_spiral()
if __name__ == "__main__":
tyro.cli(do_refine)