Spaces:
Runtime error
Runtime error
heheyas
commited on
Commit
•
b1531dc
1
Parent(s):
3667a5a
update app.py
Browse files- app.py +107 -139
- app_bkp.py +294 -0
app.py
CHANGED
@@ -25,6 +25,7 @@ from glob import glob
|
|
25 |
from mediapy import write_video
|
26 |
from pathlib import Path
|
27 |
import spaces
|
|
|
28 |
|
29 |
|
30 |
@spaces.GPU
|
@@ -142,153 +143,120 @@ def do_sample(
|
|
142 |
return video_path
|
143 |
|
144 |
|
|
|
145 |
def change_model_params(model, min_cfg, max_cfg):
|
146 |
model.sampler.guider.max_scale = max_cfg
|
147 |
model.sampler.guider.min_scale = min_cfg
|
148 |
|
149 |
|
150 |
-
|
151 |
-
def launch(device="cuda", share=False):
|
152 |
-
model_config = "./scripts/pub/configs/V3D_512.yaml"
|
153 |
-
num_frames = OmegaConf.load(
|
154 |
-
model_config
|
155 |
-
).model.params.sampler_config.params.guider_config.params.num_frames
|
156 |
-
print("Detected num_frames:", num_frames)
|
157 |
-
# num_steps = default(num_steps, 25)
|
158 |
-
num_steps = 25
|
159 |
-
output_folder = "outputs/V3D_512"
|
160 |
-
|
161 |
-
sd = load_safetensors("./ckpts/svd_xt.safetensors")
|
162 |
-
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
|
163 |
-
clip_model = instantiate_from_config(clip_model_config).eval()
|
164 |
-
clip_sd = dict()
|
165 |
-
for k, v in sd.items():
|
166 |
-
if "conditioner.embedders.0" in k:
|
167 |
-
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
|
168 |
-
clip_model.load_state_dict(clip_sd)
|
169 |
-
clip_model = clip_model.to(device)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
ae_model.load_state_dict(encoder_sd)
|
178 |
-
ae_model = ae_model.to(device)
|
179 |
-
rembg_session = rembg.new_session()
|
180 |
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
label="Number of Decoding frames",
|
200 |
-
minimum=1,
|
201 |
-
maximum=num_frames,
|
202 |
-
step=1,
|
203 |
-
)
|
204 |
-
min_guidance_slider = gr.Slider(
|
205 |
-
value=3.5,
|
206 |
-
label="Min CFG Value",
|
207 |
-
minimum=0.05,
|
208 |
-
maximum=0.5,
|
209 |
-
step=0.05,
|
210 |
-
)
|
211 |
-
max_guidance_slider = gr.Slider(
|
212 |
-
value=3.5,
|
213 |
-
label="Max CFG Value",
|
214 |
-
minimum=0.05,
|
215 |
-
maximum=0.5,
|
216 |
-
step=0.05,
|
217 |
-
)
|
218 |
-
run_button = gr.Button(value="Run V3D")
|
219 |
-
|
220 |
-
with gr.Column():
|
221 |
-
output_video = gr.Video(value=None, label="Output Orbit Video")
|
222 |
-
|
223 |
-
@run_button.click(
|
224 |
-
inputs=[
|
225 |
-
input_image,
|
226 |
-
border_ratio_slider,
|
227 |
-
min_guidance_slider,
|
228 |
-
max_guidance_slider,
|
229 |
-
decoding_t_slider,
|
230 |
-
],
|
231 |
-
outputs=[output_video],
|
232 |
)
|
233 |
-
def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
|
234 |
-
change_model_params(model, min_guidance, max_guidance)
|
235 |
-
return do_sample(
|
236 |
-
image,
|
237 |
-
model,
|
238 |
-
clip_model,
|
239 |
-
ae_model,
|
240 |
-
device,
|
241 |
-
num_frames,
|
242 |
-
num_steps,
|
243 |
-
int(decoding_t),
|
244 |
-
border_ratio,
|
245 |
-
False,
|
246 |
-
rembg_session,
|
247 |
-
output_folder,
|
248 |
-
)
|
249 |
-
|
250 |
-
# do_sample(
|
251 |
-
# np.asarray(Image.open("assets/baby_yoda.png")),
|
252 |
-
# model,
|
253 |
-
# clip_model,
|
254 |
-
# ae_model,
|
255 |
-
# device,
|
256 |
-
# num_frames,
|
257 |
-
# num_steps,
|
258 |
-
# 1,
|
259 |
-
# 0.3,
|
260 |
-
# False,
|
261 |
-
# rembg_session,
|
262 |
-
# output_folder,
|
263 |
-
# )
|
264 |
-
demo.launch(inbrowser=True, inline=False, share=share, show_error=True)
|
265 |
-
|
266 |
-
|
267 |
-
if __name__ == "__main__":
|
268 |
-
parser = argparse.ArgumentParser()
|
269 |
-
parser.add_argument("--device", type=str, default="cuda")
|
270 |
-
parser.add_argument("--share", action="store_true")
|
271 |
-
|
272 |
-
opt = parser.parse_args()
|
273 |
-
|
274 |
-
test = OmegaConf.load("./scripts/pub/configs/V3D_512.yaml")
|
275 |
-
print(test)
|
276 |
-
|
277 |
-
def download_if_need(path, url):
|
278 |
-
if Path(path).exists():
|
279 |
-
return
|
280 |
-
import wget
|
281 |
-
|
282 |
-
path = Path(path)
|
283 |
-
path.parent.mkdir(parents=True, exist_ok=True)
|
284 |
-
wget.download(url, out=str(path))
|
285 |
|
286 |
-
# download_if_need(
|
287 |
-
# "ckpts/svd_xt.safetensors",
|
288 |
-
# "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors",
|
289 |
-
# )
|
290 |
-
# download_if_need(
|
291 |
-
# "ckpts/V3D_512.ckpt", "https://huggingface.co/heheyas/V3D/resolve/main/V3D.ckpt"
|
292 |
-
# )
|
293 |
|
294 |
-
|
|
|
25 |
from mediapy import write_video
|
26 |
from pathlib import Path
|
27 |
import spaces
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
|
30 |
|
31 |
@spaces.GPU
|
|
|
143 |
return video_path
|
144 |
|
145 |
|
146 |
+
@spaces.GPU
|
147 |
def change_model_params(model, min_cfg, max_cfg):
|
148 |
model.sampler.guider.max_scale = max_cfg
|
149 |
model.sampler.guider.min_scale = min_cfg
|
150 |
|
151 |
|
152 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
# download
|
155 |
+
V3D_ckpt_path = hf_hub_download(repo_id="heheyas/V3D", filename="V3D.ckpt")
|
156 |
+
svd_xt_ckpt_path = hf_hub_download(
|
157 |
+
repo_id="stabilityai/stable-video-diffusion-img2vid-xt",
|
158 |
+
filename="svd_xt.safetensors",
|
159 |
+
)
|
|
|
|
|
|
|
160 |
|
161 |
+
model_config = "./scripts/pub/configs/V3D_512.yaml"
|
162 |
+
num_frames = OmegaConf.load(
|
163 |
+
model_config
|
164 |
+
).model.params.sampler_config.params.guider_config.params.num_frames
|
165 |
+
print("Detected num_frames:", num_frames)
|
166 |
+
# num_steps = default(num_steps, 25)
|
167 |
+
num_steps = 25
|
168 |
+
output_folder = "outputs/V3D_512"
|
169 |
+
|
170 |
+
sd = load_safetensors(svd_xt_ckpt_path)
|
171 |
+
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
|
172 |
+
clip_model = instantiate_from_config(clip_model_config).eval()
|
173 |
+
clip_sd = dict()
|
174 |
+
for k, v in sd.items():
|
175 |
+
if "conditioner.embedders.0" in k:
|
176 |
+
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
|
177 |
+
clip_model.load_state_dict(clip_sd)
|
178 |
+
clip_model = clip_model.to(device)
|
179 |
+
|
180 |
+
ae_model_config = OmegaConf.load("./configs/ae/video.yaml")
|
181 |
+
ae_model = instantiate_from_config(ae_model_config).eval()
|
182 |
+
encoder_sd = dict()
|
183 |
+
for k, v in sd.items():
|
184 |
+
if "first_stage_model" in k:
|
185 |
+
encoder_sd[k.replace("first_stage_model.", "")] = v
|
186 |
+
ae_model.load_state_dict(encoder_sd)
|
187 |
+
ae_model = ae_model.to(device)
|
188 |
+
rembg_session = rembg.new_session()
|
189 |
+
|
190 |
+
model_config.model.params.ckpt_path = V3D_ckpt_path
|
191 |
+
model, _ = load_model(
|
192 |
+
model_config, device, num_frames, num_steps, min_cfg=3.5, max_cfg=3.5
|
193 |
+
)
|
194 |
+
model = model.to(device)
|
195 |
+
|
196 |
+
with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo:
|
197 |
+
with gr.Row(equal_height=True):
|
198 |
+
with gr.Column():
|
199 |
+
input_image = gr.Image(value=None, label="Input Image")
|
200 |
+
|
201 |
+
border_ratio_slider = gr.Slider(
|
202 |
+
value=0.3,
|
203 |
+
label="Border Ratio",
|
204 |
+
minimum=0.05,
|
205 |
+
maximum=0.5,
|
206 |
+
step=0.05,
|
207 |
+
)
|
208 |
+
decoding_t_slider = gr.Slider(
|
209 |
+
value=1,
|
210 |
+
label="Number of Decoding frames",
|
211 |
+
minimum=1,
|
212 |
+
maximum=num_frames,
|
213 |
+
step=1,
|
214 |
+
)
|
215 |
+
min_guidance_slider = gr.Slider(
|
216 |
+
value=3.5,
|
217 |
+
label="Min CFG Value",
|
218 |
+
minimum=0.05,
|
219 |
+
maximum=0.5,
|
220 |
+
step=0.05,
|
221 |
+
)
|
222 |
+
max_guidance_slider = gr.Slider(
|
223 |
+
value=3.5,
|
224 |
+
label="Max CFG Value",
|
225 |
+
minimum=0.05,
|
226 |
+
maximum=0.5,
|
227 |
+
step=0.05,
|
228 |
+
)
|
229 |
+
run_button = gr.Button(value="Run V3D")
|
230 |
+
|
231 |
+
with gr.Column():
|
232 |
+
output_video = gr.Video(value=None, label="Output Orbit Video")
|
233 |
+
|
234 |
+
@run_button.click(
|
235 |
+
inputs=[
|
236 |
+
input_image,
|
237 |
+
border_ratio_slider,
|
238 |
+
min_guidance_slider,
|
239 |
+
max_guidance_slider,
|
240 |
+
decoding_t_slider,
|
241 |
+
],
|
242 |
+
outputs=[output_video],
|
243 |
)
|
244 |
+
def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
|
245 |
+
change_model_params(model, min_guidance, max_guidance)
|
246 |
+
return do_sample(
|
247 |
+
image,
|
248 |
+
model,
|
249 |
+
clip_model,
|
250 |
+
ae_model,
|
251 |
+
device,
|
252 |
+
num_frames,
|
253 |
+
num_steps,
|
254 |
+
int(decoding_t),
|
255 |
+
border_ratio,
|
256 |
+
False,
|
257 |
+
rembg_session,
|
258 |
+
output_folder,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
+
demo.launch()
|
app_bkp.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO
|
2 |
+
import numpy as np
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
from torchvision.utils import make_grid
|
6 |
+
import tempfile
|
7 |
+
import gradio as gr
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
from einops import rearrange
|
10 |
+
from scripts.pub.V3D_512 import (
|
11 |
+
sample_one,
|
12 |
+
get_batch,
|
13 |
+
get_unique_embedder_keys_from_conditioner,
|
14 |
+
load_model,
|
15 |
+
)
|
16 |
+
from sgm.util import default, instantiate_from_config
|
17 |
+
from safetensors.torch import load_file as load_safetensors
|
18 |
+
from PIL import Image
|
19 |
+
from kiui.op import recenter
|
20 |
+
from torchvision.transforms import ToTensor
|
21 |
+
from einops import rearrange, repeat
|
22 |
+
import rembg
|
23 |
+
import os
|
24 |
+
from glob import glob
|
25 |
+
from mediapy import write_video
|
26 |
+
from pathlib import Path
|
27 |
+
import spaces
|
28 |
+
|
29 |
+
|
30 |
+
@spaces.GPU
|
31 |
+
def do_sample(
|
32 |
+
image,
|
33 |
+
model,
|
34 |
+
clip_model,
|
35 |
+
ae_model,
|
36 |
+
device,
|
37 |
+
num_frames,
|
38 |
+
num_steps,
|
39 |
+
decoding_t,
|
40 |
+
border_ratio,
|
41 |
+
ignore_alpha,
|
42 |
+
rembg_session,
|
43 |
+
output_folder,
|
44 |
+
):
|
45 |
+
# if image.mode == "RGBA":
|
46 |
+
# image = image.convert("RGB")
|
47 |
+
image = Image.fromarray(image)
|
48 |
+
w, h = image.size
|
49 |
+
|
50 |
+
if border_ratio > 0:
|
51 |
+
if image.mode != "RGBA" or ignore_alpha:
|
52 |
+
image = image.convert("RGB")
|
53 |
+
image = np.asarray(image)
|
54 |
+
carved_image = rembg.remove(image, session=rembg_session) # [H, W, 4]
|
55 |
+
else:
|
56 |
+
image = np.asarray(image)
|
57 |
+
carved_image = image
|
58 |
+
mask = carved_image[..., -1] > 0
|
59 |
+
image = recenter(carved_image, mask, border_ratio=border_ratio)
|
60 |
+
image = image.astype(np.float32) / 255.0
|
61 |
+
if image.shape[-1] == 4:
|
62 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
63 |
+
image = Image.fromarray((image * 255).astype(np.uint8))
|
64 |
+
else:
|
65 |
+
print("Ignore border ratio")
|
66 |
+
image = image.resize((512, 512))
|
67 |
+
|
68 |
+
image = ToTensor()(image)
|
69 |
+
image = image * 2.0 - 1.0
|
70 |
+
|
71 |
+
image = image.unsqueeze(0).to(device)
|
72 |
+
H, W = image.shape[2:]
|
73 |
+
assert image.shape[1] == 3
|
74 |
+
F = 8
|
75 |
+
C = 4
|
76 |
+
shape = (num_frames, C, H // F, W // F)
|
77 |
+
|
78 |
+
value_dict = {}
|
79 |
+
value_dict["motion_bucket_id"] = 0
|
80 |
+
value_dict["fps_id"] = 0
|
81 |
+
value_dict["cond_aug"] = 0.05
|
82 |
+
value_dict["cond_frames_without_noise"] = clip_model(image)
|
83 |
+
value_dict["cond_frames"] = ae_model.encode(image)
|
84 |
+
value_dict["cond_frames"] += 0.05 * torch.randn_like(value_dict["cond_frames"])
|
85 |
+
value_dict["cond_aug"] = 0.05
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
with torch.autocast(device):
|
89 |
+
batch, batch_uc = get_batch(
|
90 |
+
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
91 |
+
value_dict,
|
92 |
+
[1, num_frames],
|
93 |
+
T=num_frames,
|
94 |
+
device=device,
|
95 |
+
)
|
96 |
+
c, uc = model.conditioner.get_unconditional_conditioning(
|
97 |
+
batch,
|
98 |
+
batch_uc=batch_uc,
|
99 |
+
force_uc_zero_embeddings=[
|
100 |
+
"cond_frames",
|
101 |
+
"cond_frames_without_noise",
|
102 |
+
],
|
103 |
+
)
|
104 |
+
|
105 |
+
for k in ["crossattn", "concat"]:
|
106 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
107 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
108 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
109 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
110 |
+
|
111 |
+
randn = torch.randn(shape, device=device)
|
112 |
+
randn = randn.to(device)
|
113 |
+
|
114 |
+
additional_model_inputs = {}
|
115 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
116 |
+
2, num_frames
|
117 |
+
).to(device)
|
118 |
+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
119 |
+
|
120 |
+
def denoiser(input, sigma, c):
|
121 |
+
return model.denoiser(
|
122 |
+
model.model, input, sigma, c, **additional_model_inputs
|
123 |
+
)
|
124 |
+
|
125 |
+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
126 |
+
model.en_and_decode_n_samples_a_time = decoding_t
|
127 |
+
samples_x = model.decode_first_stage(samples_z)
|
128 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
129 |
+
|
130 |
+
os.makedirs(output_folder, exist_ok=True)
|
131 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
132 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
133 |
+
|
134 |
+
frames = (
|
135 |
+
(rearrange(samples, "t c h w -> t h w c") * 255)
|
136 |
+
.cpu()
|
137 |
+
.numpy()
|
138 |
+
.astype(np.uint8)
|
139 |
+
)
|
140 |
+
write_video(video_path, frames, fps=6)
|
141 |
+
|
142 |
+
return video_path
|
143 |
+
|
144 |
+
|
145 |
+
def change_model_params(model, min_cfg, max_cfg):
|
146 |
+
model.sampler.guider.max_scale = max_cfg
|
147 |
+
model.sampler.guider.min_scale = min_cfg
|
148 |
+
|
149 |
+
|
150 |
+
@spaces.GPU
|
151 |
+
def launch(device="cuda", share=False):
|
152 |
+
model_config = "./scripts/pub/configs/V3D_512.yaml"
|
153 |
+
num_frames = OmegaConf.load(
|
154 |
+
model_config
|
155 |
+
).model.params.sampler_config.params.guider_config.params.num_frames
|
156 |
+
print("Detected num_frames:", num_frames)
|
157 |
+
# num_steps = default(num_steps, 25)
|
158 |
+
num_steps = 25
|
159 |
+
output_folder = "outputs/V3D_512"
|
160 |
+
|
161 |
+
sd = load_safetensors("./ckpts/svd_xt.safetensors")
|
162 |
+
clip_model_config = OmegaConf.load("./configs/embedder/clip_image.yaml")
|
163 |
+
clip_model = instantiate_from_config(clip_model_config).eval()
|
164 |
+
clip_sd = dict()
|
165 |
+
for k, v in sd.items():
|
166 |
+
if "conditioner.embedders.0" in k:
|
167 |
+
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
|
168 |
+
clip_model.load_state_dict(clip_sd)
|
169 |
+
clip_model = clip_model.to(device)
|
170 |
+
|
171 |
+
ae_model_config = OmegaConf.load("./configs/ae/video.yaml")
|
172 |
+
ae_model = instantiate_from_config(ae_model_config).eval()
|
173 |
+
encoder_sd = dict()
|
174 |
+
for k, v in sd.items():
|
175 |
+
if "first_stage_model" in k:
|
176 |
+
encoder_sd[k.replace("first_stage_model.", "")] = v
|
177 |
+
ae_model.load_state_dict(encoder_sd)
|
178 |
+
ae_model = ae_model.to(device)
|
179 |
+
rembg_session = rembg.new_session()
|
180 |
+
|
181 |
+
model, _ = load_model(
|
182 |
+
model_config, device, num_frames, num_steps, min_cfg=3.5, max_cfg=3.5
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo:
|
186 |
+
with gr.Row(equal_height=True):
|
187 |
+
with gr.Column():
|
188 |
+
input_image = gr.Image(value=None, label="Input Image")
|
189 |
+
|
190 |
+
border_ratio_slider = gr.Slider(
|
191 |
+
value=0.3,
|
192 |
+
label="Border Ratio",
|
193 |
+
minimum=0.05,
|
194 |
+
maximum=0.5,
|
195 |
+
step=0.05,
|
196 |
+
)
|
197 |
+
decoding_t_slider = gr.Slider(
|
198 |
+
value=1,
|
199 |
+
label="Number of Decoding frames",
|
200 |
+
minimum=1,
|
201 |
+
maximum=num_frames,
|
202 |
+
step=1,
|
203 |
+
)
|
204 |
+
min_guidance_slider = gr.Slider(
|
205 |
+
value=3.5,
|
206 |
+
label="Min CFG Value",
|
207 |
+
minimum=0.05,
|
208 |
+
maximum=0.5,
|
209 |
+
step=0.05,
|
210 |
+
)
|
211 |
+
max_guidance_slider = gr.Slider(
|
212 |
+
value=3.5,
|
213 |
+
label="Max CFG Value",
|
214 |
+
minimum=0.05,
|
215 |
+
maximum=0.5,
|
216 |
+
step=0.05,
|
217 |
+
)
|
218 |
+
run_button = gr.Button(value="Run V3D")
|
219 |
+
|
220 |
+
with gr.Column():
|
221 |
+
output_video = gr.Video(value=None, label="Output Orbit Video")
|
222 |
+
|
223 |
+
@run_button.click(
|
224 |
+
inputs=[
|
225 |
+
input_image,
|
226 |
+
border_ratio_slider,
|
227 |
+
min_guidance_slider,
|
228 |
+
max_guidance_slider,
|
229 |
+
decoding_t_slider,
|
230 |
+
],
|
231 |
+
outputs=[output_video],
|
232 |
+
)
|
233 |
+
def _(image, border_ratio, min_guidance, max_guidance, decoding_t):
|
234 |
+
change_model_params(model, min_guidance, max_guidance)
|
235 |
+
return do_sample(
|
236 |
+
image,
|
237 |
+
model,
|
238 |
+
clip_model,
|
239 |
+
ae_model,
|
240 |
+
device,
|
241 |
+
num_frames,
|
242 |
+
num_steps,
|
243 |
+
int(decoding_t),
|
244 |
+
border_ratio,
|
245 |
+
False,
|
246 |
+
rembg_session,
|
247 |
+
output_folder,
|
248 |
+
)
|
249 |
+
|
250 |
+
# do_sample(
|
251 |
+
# np.asarray(Image.open("assets/baby_yoda.png")),
|
252 |
+
# model,
|
253 |
+
# clip_model,
|
254 |
+
# ae_model,
|
255 |
+
# device,
|
256 |
+
# num_frames,
|
257 |
+
# num_steps,
|
258 |
+
# 1,
|
259 |
+
# 0.3,
|
260 |
+
# False,
|
261 |
+
# rembg_session,
|
262 |
+
# output_folder,
|
263 |
+
# )
|
264 |
+
demo.launch(inbrowser=True, inline=False, share=share, show_error=True)
|
265 |
+
|
266 |
+
|
267 |
+
if __name__ == "__main__":
|
268 |
+
parser = argparse.ArgumentParser()
|
269 |
+
parser.add_argument("--device", type=str, default="cuda")
|
270 |
+
parser.add_argument("--share", action="store_true")
|
271 |
+
|
272 |
+
opt = parser.parse_args()
|
273 |
+
|
274 |
+
test = OmegaConf.load("./scripts/pub/configs/V3D_512.yaml")
|
275 |
+
print(test)
|
276 |
+
|
277 |
+
def download_if_need(path, url):
|
278 |
+
if Path(path).exists():
|
279 |
+
return
|
280 |
+
import wget
|
281 |
+
|
282 |
+
path = Path(path)
|
283 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
284 |
+
wget.download(url, out=str(path))
|
285 |
+
|
286 |
+
# download_if_need(
|
287 |
+
# "ckpts/svd_xt.safetensors",
|
288 |
+
# "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors",
|
289 |
+
# )
|
290 |
+
# download_if_need(
|
291 |
+
# "ckpts/V3D_512.ckpt", "https://huggingface.co/heheyas/V3D/resolve/main/V3D.ckpt"
|
292 |
+
# )
|
293 |
+
|
294 |
+
launch(opt.device, opt.share)
|