import gradio as gr import edge_tts import asyncio import tempfile import os from huggingface_hub import InferenceClient import re from streaming_stt_nemo import Model import torch import random import pandas as pd from datetime import datetime import base64 import io import json default_lang = "en" engines = { default_lang: Model(default_lang) } def transcribe(audio): lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text HF_TOKEN = os.environ.get("HF_TOKEN", None) def client_fn(model): if "Mixtral" in model: return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") elif "Llama" in model: return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") elif "Mistral" in model: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") elif "Phi" in model: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") else: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") def randomize_seed_fn(seed: int) -> int: seed = random.randint(0, 999999) return seed system_instructions1 = """ [SYSTEM] Answer as Dr. Nova Quantum, a brilliant 50-something scientist specializing in quantum computing and artificial intelligence. Your responses should reflect your vast knowledge and experience in cutting-edge technology and scientific advancements. Maintain a professional yet approachable demeanor, offering insights that blend theoretical concepts with practical applications. Your goal is to educate and inspire, making complex topics accessible without oversimplifying. Draw from your decades of research and innovation to provide nuanced, forward-thinking answers. Remember, you're not just sharing information, but guiding others towards a deeper understanding of our technological future. Keep conversations engaging, clear, and concise. Avoid unnecessary introductions and answer the user's questions directly. Respond in a manner that reflects your expertise and wisdom. [USER] """ # Initialize an empty DataFrame to store the history history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response']) def save_history(): history_df_copy = history_df.copy() history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str) history_df_copy.to_json('chat_history.json', orient='records') def load_history(): global history_df if os.path.exists('chat_history.json'): history_df = pd.read_json('chat_history.json', orient='records') history_df['Timestamp'] = pd.to_datetime(history_df['Timestamp']) else: history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response']) return history_df def models(text, model="Mixtral 8x7B", seed=42): global history_df seed = int(randomize_seed_fn(seed)) generator = torch.Generator().manual_seed(seed) client = client_fn(model) generate_kwargs = dict( max_new_tokens=300, seed=seed ) formatted_prompt = system_instructions1 + text + "[DR. NOVA QUANTUM]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text # Add the current interaction to the history DataFrame new_row = pd.DataFrame({ 'Timestamp': [datetime.now()], 'Request': [text], 'Response': [output] }) history_df = pd.concat([history_df, new_row], ignore_index=True) save_history() return output async def respond(audio, model, seed): user = transcribe(audio) reply = models(user, model, seed) communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path def display_history(): df = load_history() df['Timestamp'] = df['Timestamp'].astype(str) return df def download_history(): csv_buffer = io.StringIO() history_df_copy = history_df.copy() history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str) history_df_copy.to_csv(csv_buffer, index=False) csv_string = csv_buffer.getvalue() b64 = base64.b64encode(csv_string.encode()).decode() href = f'data:text/csv;base64,{b64}' return gr.HTML(f'Download Chat History') DESCRIPTION = """ #
Dr. Nova Quantumâš¡
###
Your Personal Guide to the Frontiers of Science and Technology
###
Engage in Voice Chat with a Visionary Scientist
""" with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): select = gr.Dropdown([ 'Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini', ], value="Mistral 7B v0.3", label="Model" ) seed = gr.Slider( label="Seed", minimum=0, maximum=999999, step=1, value=0, visible=False ) input_audio = gr.Audio(label="User", sources="microphone", type="filepath") output_audio = gr.Audio(label="Dr. Nova Quantum", type="filepath", autoplay=True) # Add a DataFrame to display the history history_display = gr.DataFrame(label="Conversation History") # Add a download button for the history download_button = gr.Button("Download Conversation History") download_link = gr.HTML() def process_audio(audio, model, seed): response = asyncio.run(respond(audio, model, seed)) return response, display_history() input_audio.change( fn=process_audio, inputs=[input_audio, select, seed], outputs=[output_audio, history_display] ) # Connect the download button to the download function download_button.click(fn=download_history, outputs=[download_link]) # Load history when the page is loaded or refreshed demo.load(fn=display_history, outputs=[history_display]) if __name__ == "__main__": # Load history at startup load_history() demo.queue(max_size=200).launch()