Spaces:
Runtime error
Runtime error
import holoviews as hv | |
import numpy as np | |
import pandas as pd | |
import panel as pn | |
import param | |
from holoviews.operation.datashader import dynspread, rasterize | |
from utils import ( | |
DATASET_COLUMNS, | |
DATASETS, | |
DATASHADER_LOGO, | |
DATASHADER_URL, | |
DEFAULT_DATASET, | |
DESCRIPTION, | |
ESA_EASTING, | |
ESA_NORTHING, | |
MAJOR_TOM_LOGO, | |
MAJOR_TOM_LYRICS, | |
MAJOR_TOM_PICTURE, | |
MAJOR_TOM_REF_URL, | |
PANEL_LOGO, | |
PANEL_URL, | |
get_closest_rows, | |
get_image, | |
get_meta_data, | |
) | |
class DatasetInput(pn.viewable.Viewer): | |
value = param.Selector( | |
default=DEFAULT_DATASET, | |
objects=DATASETS, | |
allow_None=False, | |
label="Dataset", | |
doc="""The name of the dataset""", | |
) | |
data = param.DataFrame(allow_None=False, doc="""The metadata dataset""") | |
columns = param.Dict(allow_None=False, doc="""The columns of the dataset""") | |
def __panel__(self): | |
return pn.widgets.RadioButtonGroup.from_param( | |
self.param.value, button_style="outline" | |
) | |
def _update_data(self): | |
columns = DATASET_COLUMNS[self.value] | |
data = pn.cache(get_meta_data)(dataset=self.value) | |
self.param.update(columns=columns, data=data) | |
class MapInput(pn.viewable.Viewer): | |
data = param.DataFrame(allow_refs=True, allow_None=False) | |
data_in_view = param.DataFrame(allow_None=False) | |
data_selected = param.DataFrame(allow_None=False) | |
_plot = param.Parameter(allow_None=False) | |
_pointer_x = param.Parameter(allow_None=False) | |
_pointer_y = param.Parameter(allow_None=False) | |
_range_xy = param.Parameter(allow_None=False) | |
_tap = param.Parameter(allow_None=False) | |
updating = param.Boolean() | |
def __panel__(self): | |
return pn.Column( | |
pn.pane.HoloViews( | |
self._plot, height=550, width=800, loading=self.param.updating | |
), | |
self._description, | |
) | |
def _handle_data_dask_change(self): | |
with self.param.update(updating=True): | |
data = self.data[["centre_easting", "centre_northing"]].copy() | |
points = hv.Points( | |
data, kdims=["centre_easting", "centre_northing"], vdims=[] | |
) | |
rangexy = hv.streams.RangeXY(source=points) | |
tap = hv.streams.Tap(source=points, x=ESA_EASTING, y=ESA_NORTHING) | |
agg = rasterize( | |
points, link_inputs=True, x_sampling=0.0001, y_sampling=0.0001 | |
) | |
dyn = dynspread(agg) | |
dyn.opts(cmap="kr_r", colorbar=True) | |
pointerx = hv.streams.PointerX(x=ESA_EASTING, source=points) | |
pointery = hv.streams.PointerY(y=ESA_NORTHING, source=points) | |
vline = hv.DynamicMap(lambda x: hv.VLine(x), streams=[pointerx]) | |
hline = hv.DynamicMap(lambda y: hv.HLine(y), streams=[pointery]) | |
tiles = hv.Tiles( | |
"https://tile.openstreetmap.org/{Z}/{X}/{Y}.png", name="OSM" | |
).opts(xlabel="Longitude", ylabel="Latitude") | |
self.param.update( | |
_plot=tiles * agg * dyn * hline * vline, | |
_pointer_x=pointerx, | |
_pointer_y=pointery, | |
_range_xy=rangexy, | |
_tap=tap, | |
) | |
update_viewed = pn.bind( | |
self._update_data_in_view, | |
rangexy.param.x_range, | |
rangexy.param.y_range, | |
watch=True, | |
) | |
update_viewed() | |
update_selected = pn.bind( | |
self._update_data_selected, tap.param.x, tap.param.y, watch=True | |
) | |
update_selected() | |
def _update_data_in_view(self, x_range, y_range): | |
if not x_range or not y_range: | |
self.data_in_view = self.data | |
return | |
data = self.data | |
data = data[ | |
(data.centre_easting.between(*x_range)) | |
& (data.centre_northing.between(*y_range)) | |
] | |
self.data_in_view = data.reset_index(drop=True) | |
def _update_data_selected(self, tap_x, tap_y): | |
self.data_selected = get_closest_rows(self.data, tap_x, tap_y) | |
def _description(self): | |
return f"Rows: {len(self.data_in_view):,}" | |
class ImageInput(pn.viewable.Viewer): | |
data = param.DataFrame( | |
allow_refs=True, allow_None=False, doc="""The metadata selected""" | |
) | |
columns = param.Dict( | |
allow_refs=True, allow_None=False, doc="""The list of columns of the dataset""" | |
) | |
column_name = param.Selector( | |
label="Image Type", | |
allow_None=False, | |
doc="""The name of the image type to view""", | |
) | |
updating = param.Boolean() | |
meta_data = param.DataFrame() | |
image = param.Parameter() | |
plot = param.Parameter() | |
_timestamp = param.Selector(label="Timestamp", objects=[None], doc="""The timestamp of the sample to view""") | |
def __panel__(self): | |
return pn.Column( | |
pn.Row( | |
pn.widgets.RadioButtonGroup.from_param( | |
self.param._timestamp, | |
button_style="outline", | |
align="end", | |
disabled=self.param.updating, | |
), | |
pn.widgets.Select.from_param( | |
self.param.column_name, disabled=self.param.updating | |
), | |
), | |
pn.Tabs( | |
pn.pane.HoloViews( | |
self.param.plot, | |
height=800, | |
width=800, | |
name="Interactive Image", | |
), | |
pn.pane.Image( | |
self.param.image, | |
name="Static Image", | |
width=800, | |
), | |
pn.widgets.Tabulator( | |
self.param.meta_data, | |
name="Meta Data", | |
disabled=True, | |
), | |
pn.pane.Markdown(self.code, name="Code"), | |
dynamic=True, | |
loading=self.param.updating, | |
), | |
) | |
def _update_timestamp(self): | |
if self.data.empty: | |
default_value = None | |
options = [None] | |
else: | |
options = sorted(self.data["timestamp"].unique()) | |
default_value = options[0] | |
self.param._timestamp.objects = options | |
if not self._timestamp in options: | |
self._timestamp = default_value | |
def _update_column_names(self): | |
options = sorted(self.columns) | |
default_value = "Thumbnail" | |
self.param.column_name.objects = options | |
if not self.column_name in options: | |
self.column_name = default_value | |
def column(self): | |
return self.columns[self.column_name] | |
def _update_plot(self): | |
if self.data.empty or not self._timestamp or not self.column_name: | |
self.meta_data = self.data.T | |
self.image = None | |
self.plot = hv.RGB(np.array([])) | |
else: | |
with self.param.update(updating=True): | |
row = self.data[self.data.timestamp == self._timestamp].iloc[0] | |
self.meta_data = pd.DataFrame(row) | |
self.image = image = pn.cache(get_image)(row, self.column) | |
image_array = np.array(image) | |
if image_array.ndim == 2: | |
self.plot = hv.Image(image_array).opts( | |
cmap="gray_r", xaxis=None, yaxis=None, colorbar=True | |
) | |
else: | |
self.plot = hv.RGB(image_array).opts(xaxis=None, yaxis=None) | |
def code(self): | |
if self.meta_data.empty: | |
return "" | |
parquet_url = self.meta_data.T["parquet_url"].iloc[0] | |
parquet_row = self.meta_data.T["parquet_row"].iloc[0] | |
return f"""\ | |
```bash | |
pip install aiohttp fsspec holoviews numpy panel pyarrow requests | |
``` | |
```python | |
from io import BytesIO | |
import holoviews as hv | |
import numpy as np | |
import panel as pn | |
import pyarrow.parquet as pq | |
from fsspec.parquet import open_parquet_file | |
from PIL import Image | |
pn.extension() | |
parquet_url = "{parquet_url}" | |
parquet_row = {parquet_row} | |
column = "{self.column}" | |
with open_parquet_file(parquet_url, columns=[column]) as f: | |
with pq.ParquetFile(f) as pf: | |
first_row_group = pf.read_row_group(parquet_row, columns=[column]) | |
stream = BytesIO(first_row_group[column][0].as_py()) | |
image = Image.open(stream) | |
image_array = np.array(image) | |
if image_array.ndim==2: | |
plot = hv.Image(image_array).opts(cmap="gray", colorbar=True) | |
else: | |
plot = hv.RGB(image_array) | |
plot.opts(xaxis=None, yaxis=None) | |
pn.panel(plot).servable() | |
``` | |
```bash | |
panel serve app.py --autoreload | |
``` | |
""" | |
class App(param.Parameterized): | |
sidebar = param.Parameter() | |
main = param.Parameter() | |
def __init__(self, **params): | |
super().__init__(**params) | |
self.sidebar = self._create_sidebar() | |
self.main = pn.FlexBox( | |
pn.Column( | |
pn.Row( | |
pn.indicators.LoadingSpinner(value=True, size=50), | |
"**Loading data...**", | |
), | |
MAJOR_TOM_LYRICS, | |
) | |
) | |
pn.state.onload(self._update_main) | |
def _create_sidebar(self): | |
return pn.Column( | |
pn.pane.Image( | |
MAJOR_TOM_LOGO, | |
link_url=MAJOR_TOM_REF_URL, | |
height=60, | |
sizing_mode="stretch_width", | |
), | |
pn.pane.Image( | |
MAJOR_TOM_PICTURE, | |
link_url=MAJOR_TOM_REF_URL, | |
sizing_mode="stretch_width", | |
), | |
DESCRIPTION, | |
pn.pane.Image(PANEL_LOGO, link_url=PANEL_URL, width=200, margin=(10, 20)), | |
pn.pane.Image( | |
DATASHADER_LOGO, link_url=DATASHADER_URL, width=200, margin=(10, 20) | |
), | |
) | |
def _create_main_content(self): | |
dataset = DatasetInput() | |
map_input = MapInput(data=dataset.param.data) | |
image_input = ImageInput( | |
data=map_input.param.data_selected, columns=dataset.param.columns | |
) | |
return pn.Column(dataset, map_input), image_input | |
def _update_main(self): | |
self.main[:] = list(self._create_main_content()) | |