Spaces:
Runtime error
Runtime error
import logging | |
from io import BytesIO | |
from pathlib import Path | |
import holoviews as hv | |
import numpy as np | |
import pandas as pd | |
import panel as pn | |
import pyarrow.parquet as pq | |
from fsspec.parquet import open_parquet_file | |
from holoviews import opts | |
from PIL import Image | |
FORMAT = "%(asctime)s | %(levelname)s | %(name)s | %(message)s" | |
MAJOR_TOM_LOGO = "assets/major-tom-esa-logo.png" | |
MAJOR_TOM_PICTURE = ( | |
"https://upload.wikimedia.org/wikipedia/en/6/6d/Major_tom_space_oddity_video.JPG" | |
) | |
MAJOR_TOM_REF_URL = "https://huggingface.co/Major-TOM" | |
MAJOR_TOM_ARXIV_URL = "https://www.arxiv.org/abs/2402.12095" | |
PANEL_LOGO = "https://panel.holoviz.org/_static/logo_horizontal_light_theme.png" | |
PANEL_URL = "https://panel.holoviz.org" | |
DATASHADER_LOGO = "https://datashader.org/_static/logo_horizontal.svg" | |
DATASHADER_URL = "https://datashader.org/" | |
REPOSITORY = "Major-TOM" | |
DEFAULT_DATASET = "Core-S2L2A" | |
DATASETS = ["Core-S1RTC", "Core-S2L2A", "Core-S2L1C"] | |
ESA_EASTING = 250668.73322714816 | |
ESA_NORTHING = 6259216.653115547 | |
_DATASET_COLUMNS_1 = { | |
# "Linear Power in the VV Polarization": "vv", | |
# "Linear Power in the VH Polarization": "vh", | |
"Thumbnail": "thumbnail", | |
} | |
_DATASET_COLUMNS_2 = { | |
"Coastal aerosol": "B01", | |
"Blue": "B02", | |
"Green": "B03", | |
"Red": "B04", | |
"Vegetation Blue": "B05", | |
"Vegetation Green": "B06", | |
"Vegetation Red": "B07", | |
"NIR": "B08", | |
"Narrow NIR": "B8A", | |
"Water vapour": "B09", | |
"SWIR, 1613.7": "B11", | |
"SWIR, 2202.4": "B12", | |
"Cloud Mask": "cloud_mask", | |
"Thumbnail": "thumbnail", | |
} | |
DATASET_COLUMNS = { | |
"Core-S1RTC": _DATASET_COLUMNS_1, | |
"Core-S2L2A": _DATASET_COLUMNS_2, | |
"Core-S2L1C": _DATASET_COLUMNS_2, | |
} | |
DATA_PATH = Path(__file__).parent / "data" | |
DESCRIPTION = f"""\ | |
## Dataset Explorer | |
This app provides a way of exploring samples present in the [MajorTOM-Core]({MAJOR_TOM_REF_URL}) dataset. It contains nearly every piece of Earth captured by ESA [Sentinel-2](https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2) satellite. | |
[Website]({MAJOR_TOM_REF_URL}), [arXiv Paper]({MAJOR_TOM_ARXIV_URL}) | |
## Instructions | |
To find a sample, navigate on the map to a place of interest. Click the map to find a dataset sample at the location you clicked. | |
## Powered by | |
""" | |
MAJOR_TOM_LYRICS = """ | |
Standing there alone, the ship is waiting | |
All systems are go, are you sure? | |
Control is not convinced, but the computer | |
Has the evidence, no need to abort | |
The countdown starts | |
Watching in a trance, the crew is certain | |
Nothing left to chance, all is working | |
Trying to relax up in the capsule | |
"Send me up a drink, " jokes **Major Tom** | |
The count goes on | |
Four, three, two, one | |
Earth below us, drifting, falling | |
Floating weightless, calling, calling home | |
Second stage is cut, we're now in orbit | |
Stabilizers up, running perfect | |
Starting to collect requested data | |
"What will it affect when all is done?" | |
Thinks **Major Tom** | |
Back at ground control, there is a problem | |
Go to rockets full, not responding | |
"Hello **Major Tom**, are you receiving? | |
Turn the thrusters on, we're standing by" | |
There's no reply | |
Four, three, two, one | |
Earth below us, drifting, falling | |
Floating weightless, calling, calling home | |
Across the stratosphere a final message | |
"Give my wife my love, " then nothing more | |
Far beneath the ship, the world is mourning | |
They don't realize he's alive | |
No one understands, but **Major Tom** sees | |
"Now the light commands, this is my home | |
I'm coming home" | |
Earth below us, drifting, falling | |
Floating weightless, coming home | |
Earth below us, drifting, falling | |
Floating weightless, coming home | |
Earth below us, drifting, falling | |
Floating weightless, coming, coming home | |
Home | |
Home | |
Home | |
Home | |
Home | |
""" | |
hv.extension("bokeh") | |
opts.defaults( | |
# opts.Curve(xaxis=None, yaxis=None, show_grid=False, show_frame=False, | |
# color='orangered', framewise=True, width=100), | |
opts.HLine(color="gray", line_width=1), | |
# opts.Layout(shared_axes=False), | |
opts.VLine(color="gray", line_width=1), | |
) | |
def _meta_data_url(dataset="Core-S2L2A", repository=REPOSITORY): | |
return f"https://huggingface.co/datasets/{repository}/{dataset}/resolve/main/metadata.parquet" | |
def _meta_data_path(dataset="Core-S2L2A", repository=REPOSITORY): | |
DATA_PATH.mkdir(parents=True, exist_ok=True) | |
return DATA_PATH / f"{dataset}_metadata.parquet" | |
def get_meta_data(dataset="Core-S2L2A", repository=REPOSITORY): | |
logging.info("Loading %s", dataset) | |
path = _meta_data_path(dataset=dataset) | |
if not path.exists(): | |
data = pd.read_parquet(_meta_data_url(dataset=dataset)) | |
data.to_parquet(path) | |
data = pd.read_parquet(path) | |
data["centre_easting"], data["centre_northing"] = ( | |
hv.util.transform.lon_lat_to_easting_northing( | |
data["centre_lon"], data["centre_lat"] | |
) | |
) | |
# Optimize Performance | |
data["timestamp"] = pd.to_datetime(data["timestamp"]) | |
numeric_cols = data.select_dtypes(include=["float64"]).columns | |
data[numeric_cols] = data[numeric_cols].astype("float32") | |
return data | |
def get_image(row, column="thumbnail"): | |
parquet_url = row["parquet_url"] | |
parquet_row = row["parquet_row"] | |
with open_parquet_file(parquet_url, columns=[column]) as f: | |
with pq.ParquetFile(f) as pf: | |
first_row_group = pf.read_row_group(parquet_row, columns=[column]) | |
stream = BytesIO(first_row_group[column][0].as_py()) | |
image = Image.open(stream) | |
return image | |
def euclidean_distance(x, y, target_x, target_y): | |
return np.sqrt((x - target_x) ** 2 + (y - target_y) ** 2) | |
def get_closest_row(data, target_easting, target_northing): | |
distance = euclidean_distance( | |
data["centre_easting"], data["centre_northing"], target_easting, target_northing | |
) | |
closest_row = data.loc[distance.idxmin()] | |
return closest_row | |
def get_closest_rows(data, target_easting, target_northing): | |
distance = euclidean_distance( | |
data["centre_easting"], data["centre_northing"], target_easting, target_northing | |
) | |
closest_rows = data[distance == distance.min()] | |
return closest_rows | |
def reconfig_basic_config(format_=FORMAT, level=logging.INFO): | |
"""(Re-)configure logging""" | |
logging.basicConfig(format=format_, level=level, force=True) | |
logging.info("Logging.basicConfig completed successfully") | |
reconfig_basic_config() | |