Spaces:
Runtime error
Runtime error
MarcSkovMadsen
commited on
Commit
•
864777a
1
Parent(s):
31a4543
speed up by removing dask
Browse files- assets/major-tom-esa-logo.png +0 -0
- components.py +8 -7
- requirements.txt +0 -1
- utils.py +12 -7
assets/major-tom-esa-logo.png
ADDED
components.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import dask.dataframe as dd
|
2 |
import holoviews as hv
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
@@ -66,9 +65,9 @@ class MapInput(pn.viewable.Viewer):
|
|
66 |
@param.depends("data", watch=True, on_init=True)
|
67 |
def _handle_data_dask_change(self):
|
68 |
with self.param.update(updating=True):
|
69 |
-
|
70 |
points = hv.Points(
|
71 |
-
|
72 |
)
|
73 |
|
74 |
rangexy = hv.streams.RangeXY(source=points)
|
@@ -149,6 +148,7 @@ class ImageInput(pn.viewable.Viewer):
|
|
149 |
self.param._timestamp,
|
150 |
button_style="outline",
|
151 |
align="end",
|
|
|
152 |
),
|
153 |
pn.widgets.Select.from_param(
|
154 |
self.param.column_name, disabled=self.param.updating
|
@@ -157,7 +157,6 @@ class ImageInput(pn.viewable.Viewer):
|
|
157 |
pn.Tabs(
|
158 |
pn.pane.HoloViews(
|
159 |
self.param.plot,
|
160 |
-
loading=self.param.updating,
|
161 |
height=800,
|
162 |
width=800,
|
163 |
name="Interactive Image",
|
@@ -165,17 +164,16 @@ class ImageInput(pn.viewable.Viewer):
|
|
165 |
pn.pane.Image(
|
166 |
self.param.image,
|
167 |
name="Static Image",
|
168 |
-
loading=self.param.updating,
|
169 |
width=800,
|
170 |
),
|
171 |
pn.widgets.Tabulator(
|
172 |
self.param.meta_data,
|
173 |
name="Meta Data",
|
174 |
-
loading=self.param.updating,
|
175 |
disabled=True,
|
176 |
),
|
177 |
pn.pane.Markdown(self.code, name="Code"),
|
178 |
dynamic=True,
|
|
|
179 |
),
|
180 |
)
|
181 |
|
@@ -291,7 +289,10 @@ class App(param.Parameterized):
|
|
291 |
def _create_sidebar(self):
|
292 |
return pn.Column(
|
293 |
pn.pane.Image(
|
294 |
-
MAJOR_TOM_LOGO,
|
|
|
|
|
|
|
295 |
),
|
296 |
pn.pane.Image(
|
297 |
MAJOR_TOM_PICTURE,
|
|
|
|
|
1 |
import holoviews as hv
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
|
|
65 |
@param.depends("data", watch=True, on_init=True)
|
66 |
def _handle_data_dask_change(self):
|
67 |
with self.param.update(updating=True):
|
68 |
+
data = self.data[["centre_easting", "centre_northing"]].copy()
|
69 |
points = hv.Points(
|
70 |
+
data, kdims=["centre_easting", "centre_northing"], vdims=[]
|
71 |
)
|
72 |
|
73 |
rangexy = hv.streams.RangeXY(source=points)
|
|
|
148 |
self.param._timestamp,
|
149 |
button_style="outline",
|
150 |
align="end",
|
151 |
+
disabled=self.param.updating,
|
152 |
),
|
153 |
pn.widgets.Select.from_param(
|
154 |
self.param.column_name, disabled=self.param.updating
|
|
|
157 |
pn.Tabs(
|
158 |
pn.pane.HoloViews(
|
159 |
self.param.plot,
|
|
|
160 |
height=800,
|
161 |
width=800,
|
162 |
name="Interactive Image",
|
|
|
164 |
pn.pane.Image(
|
165 |
self.param.image,
|
166 |
name="Static Image",
|
|
|
167 |
width=800,
|
168 |
),
|
169 |
pn.widgets.Tabulator(
|
170 |
self.param.meta_data,
|
171 |
name="Meta Data",
|
|
|
172 |
disabled=True,
|
173 |
),
|
174 |
pn.pane.Markdown(self.code, name="Code"),
|
175 |
dynamic=True,
|
176 |
+
loading=self.param.updating,
|
177 |
),
|
178 |
)
|
179 |
|
|
|
289 |
def _create_sidebar(self):
|
290 |
return pn.Column(
|
291 |
pn.pane.Image(
|
292 |
+
MAJOR_TOM_LOGO,
|
293 |
+
link_url=MAJOR_TOM_REF_URL,
|
294 |
+
height=60,
|
295 |
+
sizing_mode="stretch_width",
|
296 |
),
|
297 |
pn.pane.Image(
|
298 |
MAJOR_TOM_PICTURE,
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
aiohttp
|
2 |
-
dask[dataframe]
|
3 |
datashader
|
4 |
fsspec
|
5 |
holoviews
|
|
|
1 |
aiohttp
|
|
|
2 |
datashader
|
3 |
fsspec
|
4 |
holoviews
|
utils.py
CHANGED
@@ -9,7 +9,7 @@ from fsspec.parquet import open_parquet_file
|
|
9 |
from holoviews import opts
|
10 |
from PIL import Image
|
11 |
|
12 |
-
MAJOR_TOM_LOGO = "
|
13 |
MAJOR_TOM_PICTURE = (
|
14 |
"https://upload.wikimedia.org/wikipedia/en/6/6d/Major_tom_space_oddity_video.JPG"
|
15 |
)
|
@@ -135,6 +135,7 @@ def _meta_data_path(dataset="Core-S2L2A", repository=REPOSITORY):
|
|
135 |
|
136 |
|
137 |
def get_meta_data(dataset="Core-S2L2A", repository=REPOSITORY):
|
|
|
138 |
path = _meta_data_path(dataset=dataset)
|
139 |
if not path.exists():
|
140 |
data = pd.read_parquet(_meta_data_url(dataset=dataset))
|
@@ -146,6 +147,10 @@ def get_meta_data(dataset="Core-S2L2A", repository=REPOSITORY):
|
|
146 |
data["centre_lon"], data["centre_lat"]
|
147 |
)
|
148 |
)
|
|
|
|
|
|
|
|
|
149 |
|
150 |
return data
|
151 |
|
@@ -167,17 +172,17 @@ def euclidean_distance(x, y, target_x, target_y):
|
|
167 |
return np.sqrt((x - target_x) ** 2 + (y - target_y) ** 2)
|
168 |
|
169 |
|
170 |
-
def get_closest_row(
|
171 |
distance = euclidean_distance(
|
172 |
-
|
173 |
)
|
174 |
-
closest_row =
|
175 |
return closest_row
|
176 |
|
177 |
|
178 |
-
def get_closest_rows(
|
179 |
distance = euclidean_distance(
|
180 |
-
|
181 |
)
|
182 |
-
closest_rows =
|
183 |
return closest_rows
|
|
|
9 |
from holoviews import opts
|
10 |
from PIL import Image
|
11 |
|
12 |
+
MAJOR_TOM_LOGO = "assets/major-tom-esa-logo.png"
|
13 |
MAJOR_TOM_PICTURE = (
|
14 |
"https://upload.wikimedia.org/wikipedia/en/6/6d/Major_tom_space_oddity_video.JPG"
|
15 |
)
|
|
|
135 |
|
136 |
|
137 |
def get_meta_data(dataset="Core-S2L2A", repository=REPOSITORY):
|
138 |
+
print(f"Loading {dataset}")
|
139 |
path = _meta_data_path(dataset=dataset)
|
140 |
if not path.exists():
|
141 |
data = pd.read_parquet(_meta_data_url(dataset=dataset))
|
|
|
147 |
data["centre_lon"], data["centre_lat"]
|
148 |
)
|
149 |
)
|
150 |
+
# Optimize Performance
|
151 |
+
data["timestamp"] = pd.to_datetime(data["timestamp"])
|
152 |
+
numeric_cols = ["cloud_cover", "nodata", "centre_lat", "centre_lon"]
|
153 |
+
data[numeric_cols] = data[numeric_cols].astype("float32")
|
154 |
|
155 |
return data
|
156 |
|
|
|
172 |
return np.sqrt((x - target_x) ** 2 + (y - target_y) ** 2)
|
173 |
|
174 |
|
175 |
+
def get_closest_row(data, target_easting, target_northing):
|
176 |
distance = euclidean_distance(
|
177 |
+
data["centre_easting"], data["centre_northing"], target_easting, target_northing
|
178 |
)
|
179 |
+
closest_row = data.loc[distance.idxmin()]
|
180 |
return closest_row
|
181 |
|
182 |
|
183 |
+
def get_closest_rows(data, target_easting, target_northing):
|
184 |
distance = euclidean_distance(
|
185 |
+
data["centre_easting"], data["centre_northing"], target_easting, target_northing
|
186 |
)
|
187 |
+
closest_rows = data[distance == distance.min()]
|
188 |
return closest_rows
|