Spaces:
Running
Running
add app file
Browse files- app.py +209 -0
- highlight_frames/.gitkeep +0 -0
- weights/.gitkeep +0 -0
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright $today.year LY Corporation
|
3 |
+
|
4 |
+
LY Corporation licenses this file to you under the Apache License,
|
5 |
+
version 2.0 (the "License"); you may not use this file except in compliance
|
6 |
+
with the License. You may obtain a copy of the License at:
|
7 |
+
|
8 |
+
https://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
Unless required by applicable law or agreed to in writing, software
|
11 |
+
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
12 |
+
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
13 |
+
License for the specific language governing permissions and limitations
|
14 |
+
under the License.
|
15 |
+
"""
|
16 |
+
import os
|
17 |
+
import torch
|
18 |
+
import subprocess
|
19 |
+
import ffmpeg
|
20 |
+
import pandas as pd
|
21 |
+
import gradio as gr
|
22 |
+
from tqdm import tqdm
|
23 |
+
from lighthouse.models import *
|
24 |
+
|
25 |
+
# use GPU if available
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
MODEL_NAMES = ['cg_detr', 'moment_detr', 'eatr', 'qd_detr', 'tr_detr', 'uvcom']
|
28 |
+
FEATURES = ['clip', 'clip_slowfast']
|
29 |
+
TOPK_MOMENT = 5
|
30 |
+
TOPK_HIGHLIGHT = 5
|
31 |
+
|
32 |
+
"""
|
33 |
+
Helper functions
|
34 |
+
"""
|
35 |
+
def load_pretrained_weights():
|
36 |
+
file_urls = []
|
37 |
+
for model_name in MODEL_NAMES:
|
38 |
+
for feature in FEATURES:
|
39 |
+
file_urls.append(
|
40 |
+
"https://zenodo.org/records/13363606/files/{}_{}_qvhighlight.ckpt".format(feature, model_name)
|
41 |
+
)
|
42 |
+
for file_url in tqdm(file_urls):
|
43 |
+
if not os.path.exists('weights/' + os.path.basename(file_url)):
|
44 |
+
command = 'wget -P weights/ {}'.format(file_url)
|
45 |
+
subprocess.run(command, shell=True)
|
46 |
+
|
47 |
+
# Slowfast weights
|
48 |
+
if not os.path.exists('SLOWFAST_8x8_R50.pkl'):
|
49 |
+
subprocess.run('wget https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/kinetics400/SLOWFAST_8x8_R50.pkl')
|
50 |
+
|
51 |
+
return file_urls
|
52 |
+
|
53 |
+
def flatten(array2d):
|
54 |
+
list1d = []
|
55 |
+
for elem in array2d:
|
56 |
+
list1d += elem
|
57 |
+
return list1d
|
58 |
+
|
59 |
+
"""
|
60 |
+
Model initialization
|
61 |
+
"""
|
62 |
+
load_pretrained_weights()
|
63 |
+
model = CGDETRPredictor('weights/clip_cg_detr_qvhighlight.ckpt', device=device,
|
64 |
+
feature_name='clip', slowfast_path='SLOWFAST_8x8_R50.pkl')
|
65 |
+
|
66 |
+
js_codes = ["""() => {{
|
67 |
+
let moment_text = document.getElementById('result_{}').textContent;
|
68 |
+
var replaced_text = moment_text.replace(/moment..../, '').replace(/\ Score.*/, '');
|
69 |
+
let start_end = JSON.parse(replaced_text);
|
70 |
+
document.getElementsByTagName("video")[0].currentTime = start_end[0];
|
71 |
+
document.getElementsByTagName("video")[0].play();
|
72 |
+
}}""".format(i) for i in range(TOPK_MOMENT)]
|
73 |
+
|
74 |
+
"""
|
75 |
+
Gradio functions
|
76 |
+
"""
|
77 |
+
def video_upload(video):
|
78 |
+
if video is None:
|
79 |
+
model.video_feats = None
|
80 |
+
model.video_mask = None
|
81 |
+
model.video_path = None
|
82 |
+
yield gr.update(value="Removed the video", visible=True)
|
83 |
+
else:
|
84 |
+
yield gr.update(value="Processing the video. Wait for a minute...", visible=True)
|
85 |
+
model.encode_video(video)
|
86 |
+
yield gr.update(value="Finished video processing!", visible=True)
|
87 |
+
|
88 |
+
def model_load(radio):
|
89 |
+
if radio is not None:
|
90 |
+
yield gr.update(value="Loading new model. Wait for a minute...", visible=True)
|
91 |
+
global model
|
92 |
+
feature, model_name = radio.split('+')
|
93 |
+
feature, model_name = feature.strip(), model_name.strip()
|
94 |
+
|
95 |
+
if model_name == 'moment_detr':
|
96 |
+
model_class = MomentDETRPredictor
|
97 |
+
elif model_name == 'qd_detr':
|
98 |
+
model_class = QDDETRPredictor
|
99 |
+
elif model_name == 'eatr':
|
100 |
+
model_class = EaTRPredictor
|
101 |
+
elif model_name == 'tr_detr':
|
102 |
+
model_class = TRDETRPredictor
|
103 |
+
elif model_name == 'uvcom':
|
104 |
+
model_class = UVCOMPredictor
|
105 |
+
elif model_name == 'taskweave':
|
106 |
+
model_class = TaskWeavePredictor
|
107 |
+
elif model_name == 'cg_detr':
|
108 |
+
model_class = CGDETRPredictor
|
109 |
+
else:
|
110 |
+
raise gr.Error("Select from the models")
|
111 |
+
|
112 |
+
model = model_class('weights/{}_{}_qvhighlight.ckpt'.format(feature, model_name),
|
113 |
+
device=device, feature_name='{}'.format(feature), slowfast_path='SLOWFAST_8x8_R50.pkl')
|
114 |
+
yield gr.update(value="Model loaded: {}".format(radio), visible=True)
|
115 |
+
|
116 |
+
def predict(textbox, line, gallery):
|
117 |
+
prediction = model.predict(textbox)
|
118 |
+
if prediction is None:
|
119 |
+
raise gr.Error('Upload the video before pushing the `Retrieve moment & highlight detection` button.')
|
120 |
+
else:
|
121 |
+
mr_results = prediction['pred_relevant_windows']
|
122 |
+
hl_results = prediction['pred_saliency_scores']
|
123 |
+
|
124 |
+
buttons = []
|
125 |
+
for i, pred in enumerate(mr_results[:TOPK_MOMENT]):
|
126 |
+
buttons.append(gr.Button(value='moment {}: [{}, {}] Score: {}'.format(i+1, pred[0], pred[1], pred[2]), visible=True))
|
127 |
+
|
128 |
+
# Visualize the HD score
|
129 |
+
seconds = [model.clip_len * i for i in range(len(hl_results))]
|
130 |
+
hl_data = pd.DataFrame({ 'second': seconds, 'saliency_score': hl_results })
|
131 |
+
min_val, max_val = min(hl_results), max(hl_results) + 1
|
132 |
+
min_x, max_x = min(seconds), max(seconds)
|
133 |
+
line = gr.LinePlot(value=hl_data, x='second', y='saliency_score', visible=True, y_lim=[min_val, max_val], x_lim=[min_x, max_x])
|
134 |
+
|
135 |
+
# Show highlight frames
|
136 |
+
n_largest_df = hl_data.nlargest(columns='saliency_score', n=TOPK_HIGHLIGHT)
|
137 |
+
highlighted_seconds = n_largest_df.second.tolist()
|
138 |
+
highlighted_scores = n_largest_df.saliency_score.tolist()
|
139 |
+
|
140 |
+
output_image_paths = []
|
141 |
+
for i, (second, score) in enumerate(zip(highlighted_seconds, highlighted_scores)):
|
142 |
+
output_path = "highlight_frames/highlight_{}.png".format(i)
|
143 |
+
(
|
144 |
+
ffmpeg
|
145 |
+
.input(model.video_path, ss=second)
|
146 |
+
.output(output_path, vframes=1, qscale=2)
|
147 |
+
.global_args('-loglevel', 'quiet', '-y')
|
148 |
+
.run()
|
149 |
+
)
|
150 |
+
output_image_paths.append((output_path, "Highlight: {} - score: {:.02f}".format(i+1, score)))
|
151 |
+
gallery = gr.Gallery(value=output_image_paths, label='gradio', columns=5, show_download_button=True, visible=True)
|
152 |
+
return buttons + [line, gallery]
|
153 |
+
|
154 |
+
|
155 |
+
def main():
|
156 |
+
title = """# Moment Retrieval & Highlight Detection Demo"""
|
157 |
+
|
158 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
159 |
+
gr.Markdown(title)
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
with gr.Column():
|
163 |
+
with gr.Group():
|
164 |
+
gr.Markdown("## Model selection")
|
165 |
+
radio_list = flatten([["{} + {}".format(feature, model_name) for model_name in MODEL_NAMES] for feature in FEATURES])
|
166 |
+
radio = gr.Radio(radio_list, label="models", value="clip + cg_detr", info="Which model do you want to use?")
|
167 |
+
load_status_text = gr.Textbox(label='Model load status', value='Model loaded: clip + cg_detr')
|
168 |
+
|
169 |
+
with gr.Group():
|
170 |
+
gr.Markdown("## Video and query")
|
171 |
+
video_input = gr.Video(elem_id='video', height=600)
|
172 |
+
output = gr.Textbox(label='Video processing progress')
|
173 |
+
query_input = gr.Textbox(label='query')
|
174 |
+
button = gr.Button("Retrieve moment & highlight detection", variant="primary")
|
175 |
+
|
176 |
+
with gr.Column():
|
177 |
+
with gr.Group():
|
178 |
+
gr.Markdown("## Retrieved moments")
|
179 |
+
|
180 |
+
button_1 = gr.Button(value='moment 1', visible=False, elem_id='result_0')
|
181 |
+
button_2 = gr.Button(value='moment 2', visible=False, elem_id='result_1')
|
182 |
+
button_3 = gr.Button(value='moment 3', visible=False, elem_id='result_2')
|
183 |
+
button_4 = gr.Button(value='moment 4', visible=False, elem_id='result_3')
|
184 |
+
button_5 = gr.Button(value='moment 5', visible=False, elem_id='result_4')
|
185 |
+
|
186 |
+
button_1.click(None, None, None, js=js_codes[0])
|
187 |
+
button_2.click(None, None, None, js=js_codes[1])
|
188 |
+
button_3.click(None, None, None, js=js_codes[2])
|
189 |
+
button_4.click(None, None, None, js=js_codes[3])
|
190 |
+
button_5.click(None, None, None, js=js_codes[4])
|
191 |
+
|
192 |
+
# dummy
|
193 |
+
with gr.Group():
|
194 |
+
gr.Markdown("## Saliency score")
|
195 |
+
line = gr.LinePlot(value=pd.DataFrame({'x': [], 'y': []}), x='x', y='y', visible=False)
|
196 |
+
gr.Markdown("### Highlighted frames")
|
197 |
+
gallery = gr.Gallery(value=[], label="highlight", columns=5, visible=False)
|
198 |
+
|
199 |
+
video_input.change(video_upload, inputs=[video_input], outputs=output)
|
200 |
+
radio.select(model_load, inputs=[radio], outputs=load_status_text)
|
201 |
+
|
202 |
+
button.click(predict,
|
203 |
+
inputs=[query_input, line, gallery],
|
204 |
+
outputs=[button_1, button_2, button_3, button_4, button_5, line, gallery])
|
205 |
+
|
206 |
+
demo.launch()
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
main()
|
highlight_frames/.gitkeep
ADDED
File without changes
|
weights/.gitkeep
ADDED
File without changes
|