Spaces:
Running
Running
IDKiro
commited on
Commit
•
7eafae4
1
Parent(s):
f78b820
init
Browse files- .gitignore +114 -0
- LICENSE +21 -0
- app.py +50 -0
- examples/1.jpg +0 -0
- examples/2.jpg +0 -0
- examples/3.jpg +0 -0
- examples/4.jpg +0 -0
- examples/5.jpg +0 -0
- examples/6.jpg +0 -0
- models/__init__.py +1 -0
- models/dehazeformer.py +474 -0
- requirements.txt +3 -0
- saved_models/dehazeformer.pth +3 -0
.gitignore
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Add by user
|
2 |
+
.vscode/
|
3 |
+
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
|
9 |
+
# C extensions
|
10 |
+
*.so
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
*.egg-info/
|
27 |
+
.installed.cfg
|
28 |
+
*.egg
|
29 |
+
MANIFEST
|
30 |
+
|
31 |
+
# PyInstaller
|
32 |
+
# Usually these files are written by a python script from a template
|
33 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
34 |
+
*.manifest
|
35 |
+
*.spec
|
36 |
+
|
37 |
+
# Installer logs
|
38 |
+
pip-log.txt
|
39 |
+
pip-delete-this-directory.txt
|
40 |
+
|
41 |
+
# Unit test / coverage reports
|
42 |
+
htmlcov/
|
43 |
+
.tox/
|
44 |
+
.nox/
|
45 |
+
.coverage
|
46 |
+
.coverage.*
|
47 |
+
.cache
|
48 |
+
nosetests.xml
|
49 |
+
coverage.xml
|
50 |
+
*.cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
|
63 |
+
# Flask stuff:
|
64 |
+
instance/
|
65 |
+
.webassets-cache
|
66 |
+
|
67 |
+
# Scrapy stuff:
|
68 |
+
.scrapy
|
69 |
+
|
70 |
+
# Sphinx documentation
|
71 |
+
docs/_build/
|
72 |
+
|
73 |
+
# PyBuilder
|
74 |
+
target/
|
75 |
+
|
76 |
+
# Jupyter Notebook
|
77 |
+
.ipynb_checkpoints
|
78 |
+
|
79 |
+
# IPython
|
80 |
+
profile_default/
|
81 |
+
ipython_config.py
|
82 |
+
|
83 |
+
# pyenv
|
84 |
+
.python-version
|
85 |
+
|
86 |
+
# celery beat schedule file
|
87 |
+
celerybeat-schedule
|
88 |
+
|
89 |
+
# SageMath parsed files
|
90 |
+
*.sage.py
|
91 |
+
|
92 |
+
# Environments
|
93 |
+
.env
|
94 |
+
.venv
|
95 |
+
env/
|
96 |
+
venv/
|
97 |
+
ENV/
|
98 |
+
env.bak/
|
99 |
+
venv.bak/
|
100 |
+
|
101 |
+
# Spyder project settings
|
102 |
+
.spyderproject
|
103 |
+
.spyproject
|
104 |
+
|
105 |
+
# Rope project settings
|
106 |
+
.ropeproject
|
107 |
+
|
108 |
+
# mkdocs documentation
|
109 |
+
/site
|
110 |
+
|
111 |
+
# mypy
|
112 |
+
.mypy_cache/
|
113 |
+
.dmypy.json
|
114 |
+
dmypy.json
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 IDKiro
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
from models import dehazeformer
|
7 |
+
|
8 |
+
|
9 |
+
def infer(raw_image):
|
10 |
+
network = dehazeformer()
|
11 |
+
network.load_state_dict(torch.load('./saved_models/dehazeformer.pth', map_location=torch.device('cpu'))['state_dict'])
|
12 |
+
# torch.save({'state_dict': network.state_dict()}, './saved_models/dehazeformer.pth')
|
13 |
+
|
14 |
+
network.eval()
|
15 |
+
|
16 |
+
image = np.array(raw_image, np.float32) / 255. * 2 - 1
|
17 |
+
image = torch.from_numpy(image)
|
18 |
+
image = image.permute((2, 0, 1)).unsqueeze(0)
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
output = network(image).clamp_(-1, 1)[0] * 0.5 + 0.5
|
22 |
+
output = output.permute((1, 2, 0))
|
23 |
+
output = np.array(output, np.float32)
|
24 |
+
output = np.round(output * 255.0)
|
25 |
+
|
26 |
+
output = Image.fromarray(output.astype(np.uint8))
|
27 |
+
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
title = "DehazeFormer"
|
32 |
+
description = f"We use a mixed dataset to train the model, allowing the trained model to work better on real hazy images. To allow the model to process high-resolution images more efficiently and effectively, we extend it to the [MCT](https://github.com/IDKiro/MCT) variant."
|
33 |
+
examples = [
|
34 |
+
["examples/1.jpg"],
|
35 |
+
["examples/2.jpg"],
|
36 |
+
["examples/3.jpg"],
|
37 |
+
["examples/4.jpg"],
|
38 |
+
["examples/5.jpg"],
|
39 |
+
["examples/6.jpg"]
|
40 |
+
]
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
infer,
|
44 |
+
inputs="image", outputs="image",
|
45 |
+
title=title,
|
46 |
+
description=description,
|
47 |
+
allow_flagging='never',
|
48 |
+
examples=examples,
|
49 |
+
)
|
50 |
+
iface.launch()
|
examples/1.jpg
ADDED
examples/2.jpg
ADDED
examples/3.jpg
ADDED
examples/4.jpg
ADDED
examples/5.jpg
ADDED
examples/6.jpg
ADDED
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .dehazeformer import MCT as dehazeformer
|
models/dehazeformer.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class RLN(nn.Module):
|
7 |
+
r"""Revised LayerNorm"""
|
8 |
+
def __init__(self, dim, eps=1e-5, detach_grad=False):
|
9 |
+
super(RLN, self).__init__()
|
10 |
+
self.eps = eps
|
11 |
+
self.detach_grad = detach_grad
|
12 |
+
|
13 |
+
self.weight = nn.Parameter(torch.ones((1, dim, 1, 1)))
|
14 |
+
self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1)))
|
15 |
+
|
16 |
+
self.meta1 = nn.Conv2d(1, dim, 1)
|
17 |
+
self.meta2 = nn.Conv2d(1, dim, 1)
|
18 |
+
|
19 |
+
def forward(self, input):
|
20 |
+
mean = torch.mean(input, dim=(1, 2, 3), keepdim=True)
|
21 |
+
std = torch.sqrt((input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps)
|
22 |
+
|
23 |
+
normalized_input = (input - mean) / std
|
24 |
+
|
25 |
+
if self.detach_grad:
|
26 |
+
rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach())
|
27 |
+
else:
|
28 |
+
rescale, rebias = self.meta1(std), self.meta2(mean)
|
29 |
+
|
30 |
+
out = normalized_input * self.weight + self.bias
|
31 |
+
return out, rescale, rebias
|
32 |
+
|
33 |
+
|
34 |
+
class Mlp(nn.Module):
|
35 |
+
def __init__(self, network_depth, in_features, hidden_features=None, out_features=None):
|
36 |
+
super().__init__()
|
37 |
+
out_features = out_features or in_features
|
38 |
+
hidden_features = hidden_features or in_features
|
39 |
+
|
40 |
+
self.network_depth = network_depth
|
41 |
+
|
42 |
+
self.mlp = nn.Sequential(
|
43 |
+
nn.Conv2d(in_features, hidden_features, 1),
|
44 |
+
nn.ReLU(True),
|
45 |
+
nn.Conv2d(hidden_features, out_features, 1)
|
46 |
+
)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
return self.mlp(x)
|
50 |
+
|
51 |
+
|
52 |
+
def window_partition(x, window_size):
|
53 |
+
B, H, W, C = x.shape
|
54 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
55 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C)
|
56 |
+
return windows
|
57 |
+
|
58 |
+
|
59 |
+
def window_reverse(windows, window_size, H, W):
|
60 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
61 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
62 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
def get_relative_positions(window_size):
|
67 |
+
coords_h = torch.arange(window_size)
|
68 |
+
coords_w = torch.arange(window_size)
|
69 |
+
|
70 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
|
71 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
72 |
+
relative_positions = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
73 |
+
|
74 |
+
relative_positions = relative_positions.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
75 |
+
relative_positions_log = torch.sign(relative_positions) * torch.log(1. + relative_positions.abs())
|
76 |
+
|
77 |
+
return relative_positions_log
|
78 |
+
|
79 |
+
|
80 |
+
class WindowAttention(nn.Module):
|
81 |
+
def __init__(self, dim, window_size, num_heads):
|
82 |
+
|
83 |
+
super().__init__()
|
84 |
+
self.dim = dim
|
85 |
+
self.window_size = window_size # Wh, Ww
|
86 |
+
self.num_heads = num_heads
|
87 |
+
head_dim = dim // num_heads
|
88 |
+
self.scale = head_dim ** -0.5
|
89 |
+
|
90 |
+
relative_positions = get_relative_positions(self.window_size)
|
91 |
+
self.register_buffer("relative_positions", relative_positions)
|
92 |
+
self.meta = nn.Sequential(
|
93 |
+
nn.Linear(2, 256, bias=True),
|
94 |
+
nn.ReLU(True),
|
95 |
+
nn.Linear(256, num_heads, bias=True)
|
96 |
+
)
|
97 |
+
|
98 |
+
self.softmax = nn.Softmax(dim=-1)
|
99 |
+
|
100 |
+
def forward(self, qkv):
|
101 |
+
B_, N, _ = qkv.shape
|
102 |
+
|
103 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(2, 0, 3, 1, 4)
|
104 |
+
|
105 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
106 |
+
|
107 |
+
q = q * self.scale
|
108 |
+
attn = (q @ k.transpose(-2, -1))
|
109 |
+
|
110 |
+
relative_position_bias = self.meta(self.relative_positions)
|
111 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
112 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
113 |
+
|
114 |
+
attn = self.softmax(attn)
|
115 |
+
|
116 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim)
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class Attention(nn.Module):
|
121 |
+
def __init__(self, network_depth, dim, num_heads, window_size, shift_size, use_attn=False, conv_type=None):
|
122 |
+
super().__init__()
|
123 |
+
self.dim = dim
|
124 |
+
self.head_dim = int(dim // num_heads)
|
125 |
+
self.num_heads = num_heads
|
126 |
+
|
127 |
+
self.window_size = window_size
|
128 |
+
self.shift_size = shift_size
|
129 |
+
|
130 |
+
self.network_depth = network_depth
|
131 |
+
self.use_attn = use_attn
|
132 |
+
self.conv_type = conv_type
|
133 |
+
|
134 |
+
if self.conv_type == 'Conv':
|
135 |
+
self.conv = nn.Sequential(
|
136 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect'),
|
137 |
+
nn.ReLU(True),
|
138 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect')
|
139 |
+
)
|
140 |
+
|
141 |
+
if self.conv_type == 'DWConv':
|
142 |
+
self.conv = nn.Conv2d(dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode='reflect')
|
143 |
+
|
144 |
+
if self.conv_type == 'DWConv' or self.use_attn:
|
145 |
+
self.V = nn.Conv2d(dim, dim, 1)
|
146 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
147 |
+
|
148 |
+
if self.use_attn:
|
149 |
+
self.QK = nn.Conv2d(dim, dim * 2, 1)
|
150 |
+
self.attn = WindowAttention(dim, window_size, num_heads)
|
151 |
+
|
152 |
+
def check_size(self, x, shift=False):
|
153 |
+
_, _, h, w = x.size()
|
154 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
155 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
156 |
+
|
157 |
+
if shift:
|
158 |
+
x = F.pad(x, (self.shift_size, (self.window_size-self.shift_size+mod_pad_w) % self.window_size,
|
159 |
+
self.shift_size, (self.window_size-self.shift_size+mod_pad_h) % self.window_size), mode='reflect')
|
160 |
+
else:
|
161 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
162 |
+
return x
|
163 |
+
|
164 |
+
def forward(self, X):
|
165 |
+
B, C, H, W = X.shape
|
166 |
+
|
167 |
+
if self.conv_type == 'DWConv' or self.use_attn:
|
168 |
+
V = self.V(X)
|
169 |
+
|
170 |
+
if self.use_attn:
|
171 |
+
QK = self.QK(X)
|
172 |
+
QKV = torch.cat([QK, V], dim=1)
|
173 |
+
|
174 |
+
# shift
|
175 |
+
shifted_QKV = self.check_size(QKV, self.shift_size > 0)
|
176 |
+
Ht, Wt = shifted_QKV.shape[2:]
|
177 |
+
|
178 |
+
# partition windows
|
179 |
+
shifted_QKV = shifted_QKV.permute(0, 2, 3, 1)
|
180 |
+
qkv = window_partition(shifted_QKV, self.window_size) # nW*B, window_size**2, C
|
181 |
+
|
182 |
+
attn_windows = self.attn(qkv)
|
183 |
+
|
184 |
+
# merge windows
|
185 |
+
shifted_out = window_reverse(attn_windows, self.window_size, Ht, Wt) # B H' W' C
|
186 |
+
|
187 |
+
# reverse cyclic shift
|
188 |
+
out = shifted_out[:, self.shift_size:(self.shift_size+H), self.shift_size:(self.shift_size+W), :]
|
189 |
+
attn_out = out.permute(0, 3, 1, 2)
|
190 |
+
|
191 |
+
if self.conv_type in ['Conv', 'DWConv']:
|
192 |
+
conv_out = self.conv(V)
|
193 |
+
out = self.proj(conv_out + attn_out)
|
194 |
+
else:
|
195 |
+
out = self.proj(attn_out)
|
196 |
+
|
197 |
+
else:
|
198 |
+
if self.conv_type == 'Conv':
|
199 |
+
out = self.conv(X) # no attention and use conv, no projection
|
200 |
+
elif self.conv_type == 'DWConv':
|
201 |
+
out = self.proj(self.conv(V))
|
202 |
+
|
203 |
+
return out
|
204 |
+
|
205 |
+
|
206 |
+
class TransformerBlock(nn.Module):
|
207 |
+
def __init__(self, network_depth, dim, num_heads, mlp_ratio=4.,
|
208 |
+
norm_layer=nn.LayerNorm, mlp_norm=False,
|
209 |
+
window_size=8, shift_size=0, use_attn=True, conv_type=None):
|
210 |
+
super().__init__()
|
211 |
+
self.use_attn = use_attn
|
212 |
+
self.mlp_norm = mlp_norm
|
213 |
+
|
214 |
+
self.norm1 = norm_layer(dim) if use_attn else nn.Identity()
|
215 |
+
self.attn = Attention(network_depth, dim, num_heads=num_heads, window_size=window_size,
|
216 |
+
shift_size=shift_size, use_attn=use_attn, conv_type=conv_type)
|
217 |
+
|
218 |
+
self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity()
|
219 |
+
self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio))
|
220 |
+
|
221 |
+
def forward(self, x):
|
222 |
+
identity = x
|
223 |
+
if self.use_attn: x, rescale, rebias = self.norm1(x)
|
224 |
+
x = self.attn(x)
|
225 |
+
if self.use_attn: x = x * rescale + rebias
|
226 |
+
x = identity + x
|
227 |
+
|
228 |
+
identity = x
|
229 |
+
if self.use_attn and self.mlp_norm: x, rescale, rebias = self.norm2(x)
|
230 |
+
x = self.mlp(x)
|
231 |
+
if self.use_attn and self.mlp_norm: x = x * rescale + rebias
|
232 |
+
x = identity + x
|
233 |
+
return x
|
234 |
+
|
235 |
+
|
236 |
+
class BasicLayer(nn.Module):
|
237 |
+
def __init__(self, network_depth, dim, depth, num_heads, mlp_ratio=4.,
|
238 |
+
norm_layer=nn.LayerNorm, window_size=8,
|
239 |
+
attn_ratio=0., attn_loc='last', conv_type=None):
|
240 |
+
|
241 |
+
super().__init__()
|
242 |
+
self.dim = dim
|
243 |
+
self.depth = depth
|
244 |
+
|
245 |
+
attn_depth = attn_ratio * depth
|
246 |
+
|
247 |
+
if attn_loc == 'last':
|
248 |
+
use_attns = [i >= depth-attn_depth for i in range(depth)]
|
249 |
+
elif attn_loc == 'first':
|
250 |
+
use_attns = [i < attn_depth for i in range(depth)]
|
251 |
+
elif attn_loc == 'middle':
|
252 |
+
use_attns = [i >= (depth-attn_depth)//2 and i < (depth+attn_depth)//2 for i in range(depth)]
|
253 |
+
|
254 |
+
# build blocks
|
255 |
+
self.blocks = nn.ModuleList([
|
256 |
+
TransformerBlock(network_depth=network_depth,
|
257 |
+
dim=dim,
|
258 |
+
num_heads=num_heads,
|
259 |
+
mlp_ratio=mlp_ratio,
|
260 |
+
norm_layer=norm_layer,
|
261 |
+
window_size=window_size,
|
262 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
263 |
+
use_attn=use_attns[i], conv_type=conv_type)
|
264 |
+
for i in range(depth)])
|
265 |
+
|
266 |
+
def forward(self, x):
|
267 |
+
for blk in self.blocks:
|
268 |
+
x = blk(x)
|
269 |
+
return x
|
270 |
+
|
271 |
+
|
272 |
+
class PatchEmbed(nn.Module):
|
273 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None):
|
274 |
+
super().__init__()
|
275 |
+
self.in_chans = in_chans
|
276 |
+
self.embed_dim = embed_dim
|
277 |
+
|
278 |
+
if kernel_size is None:
|
279 |
+
kernel_size = patch_size
|
280 |
+
|
281 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size,
|
282 |
+
padding=(kernel_size-patch_size+1)//2, padding_mode='reflect')
|
283 |
+
|
284 |
+
def forward(self, x):
|
285 |
+
x = self.proj(x)
|
286 |
+
return x
|
287 |
+
|
288 |
+
|
289 |
+
class PatchUnEmbed(nn.Module):
|
290 |
+
def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None):
|
291 |
+
super().__init__()
|
292 |
+
self.out_chans = out_chans
|
293 |
+
self.embed_dim = embed_dim
|
294 |
+
|
295 |
+
if kernel_size is None:
|
296 |
+
kernel_size = 1
|
297 |
+
|
298 |
+
self.proj = nn.Sequential(
|
299 |
+
nn.Conv2d(embed_dim, out_chans*patch_size**2, kernel_size=kernel_size,
|
300 |
+
padding=kernel_size//2, padding_mode='reflect'),
|
301 |
+
nn.PixelShuffle(patch_size)
|
302 |
+
)
|
303 |
+
|
304 |
+
def forward(self, x):
|
305 |
+
x = self.proj(x)
|
306 |
+
return x
|
307 |
+
|
308 |
+
|
309 |
+
class SKFusion(nn.Module):
|
310 |
+
def __init__(self, dim, height=2, reduction=8):
|
311 |
+
super(SKFusion, self).__init__()
|
312 |
+
|
313 |
+
self.height = height
|
314 |
+
d = max(int(dim/reduction), 4)
|
315 |
+
|
316 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
317 |
+
self.mlp = nn.Sequential(
|
318 |
+
nn.Conv2d(dim, d, 1, bias=False),
|
319 |
+
nn.ReLU(),
|
320 |
+
nn.Conv2d(d, dim*height, 1, bias=False)
|
321 |
+
)
|
322 |
+
|
323 |
+
self.softmax = nn.Softmax(dim=1)
|
324 |
+
|
325 |
+
def forward(self, in_feats):
|
326 |
+
B, C, H, W = in_feats[0].shape
|
327 |
+
|
328 |
+
in_feats = torch.cat(in_feats, dim=1)
|
329 |
+
in_feats = in_feats.view(B, self.height, C, H, W)
|
330 |
+
|
331 |
+
feats_sum = torch.sum(in_feats, dim=1)
|
332 |
+
attn = self.mlp(self.avg_pool(feats_sum))
|
333 |
+
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
|
334 |
+
|
335 |
+
out = torch.sum(in_feats*attn, dim=1)
|
336 |
+
return out
|
337 |
+
|
338 |
+
|
339 |
+
class DehazeFormer(nn.Module):
|
340 |
+
def __init__(self, in_chans=3, out_chans=3, window_size=8,
|
341 |
+
embed_dims=[24, 48, 96, 48, 24],
|
342 |
+
mlp_ratios=[2., 2., 4., 2., 2.],
|
343 |
+
depths=[4, 4, 8, 4, 4],
|
344 |
+
num_heads=[2, 4, 6, 4, 2],
|
345 |
+
attn_ratio=[1., 1., 1., 1., 1.],
|
346 |
+
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'],
|
347 |
+
norm_layer=[RLN, RLN, RLN, RLN, RLN]):
|
348 |
+
super(DehazeFormer, self).__init__()
|
349 |
+
|
350 |
+
# setting
|
351 |
+
self.patch_size = 4
|
352 |
+
self.window_size = window_size
|
353 |
+
self.mlp_ratios = mlp_ratios
|
354 |
+
|
355 |
+
# split image into non-overlapping patches
|
356 |
+
self.patch_embed = PatchEmbed(
|
357 |
+
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3)
|
358 |
+
|
359 |
+
# backbone
|
360 |
+
self.layer1 = BasicLayer(network_depth=sum(depths), dim=embed_dims[0], depth=depths[0],
|
361 |
+
num_heads=num_heads[0], mlp_ratio=mlp_ratios[0],
|
362 |
+
norm_layer=norm_layer[0], window_size=window_size,
|
363 |
+
attn_ratio=attn_ratio[0], attn_loc='last', conv_type=conv_type[0])
|
364 |
+
|
365 |
+
self.patch_merge1 = PatchEmbed(
|
366 |
+
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
|
367 |
+
|
368 |
+
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)
|
369 |
+
|
370 |
+
self.layer2 = BasicLayer(network_depth=sum(depths), dim=embed_dims[1], depth=depths[1],
|
371 |
+
num_heads=num_heads[1], mlp_ratio=mlp_ratios[1],
|
372 |
+
norm_layer=norm_layer[1], window_size=window_size,
|
373 |
+
attn_ratio=attn_ratio[1], attn_loc='last', conv_type=conv_type[1])
|
374 |
+
|
375 |
+
self.patch_merge2 = PatchEmbed(
|
376 |
+
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
|
377 |
+
|
378 |
+
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)
|
379 |
+
|
380 |
+
self.layer3 = BasicLayer(network_depth=sum(depths), dim=embed_dims[2], depth=depths[2],
|
381 |
+
num_heads=num_heads[2], mlp_ratio=mlp_ratios[2],
|
382 |
+
norm_layer=norm_layer[2], window_size=window_size,
|
383 |
+
attn_ratio=attn_ratio[2], attn_loc='last', conv_type=conv_type[2])
|
384 |
+
|
385 |
+
self.patch_split1 = PatchUnEmbed(
|
386 |
+
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2])
|
387 |
+
|
388 |
+
assert embed_dims[1] == embed_dims[3]
|
389 |
+
self.fusion1 = SKFusion(embed_dims[3])
|
390 |
+
|
391 |
+
self.layer4 = BasicLayer(network_depth=sum(depths), dim=embed_dims[3], depth=depths[3],
|
392 |
+
num_heads=num_heads[3], mlp_ratio=mlp_ratios[3],
|
393 |
+
norm_layer=norm_layer[3], window_size=window_size,
|
394 |
+
attn_ratio=attn_ratio[3], attn_loc='last', conv_type=conv_type[3])
|
395 |
+
|
396 |
+
self.patch_split2 = PatchUnEmbed(
|
397 |
+
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3])
|
398 |
+
|
399 |
+
assert embed_dims[0] == embed_dims[4]
|
400 |
+
self.fusion2 = SKFusion(embed_dims[4])
|
401 |
+
|
402 |
+
self.layer5 = BasicLayer(network_depth=sum(depths), dim=embed_dims[4], depth=depths[4],
|
403 |
+
num_heads=num_heads[4], mlp_ratio=mlp_ratios[4],
|
404 |
+
norm_layer=norm_layer[4], window_size=window_size,
|
405 |
+
attn_ratio=attn_ratio[4], attn_loc='last', conv_type=conv_type[4])
|
406 |
+
|
407 |
+
# merge non-overlapping patches into image
|
408 |
+
self.patch_unembed = PatchUnEmbed(
|
409 |
+
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3)
|
410 |
+
|
411 |
+
def forward(self, x):
|
412 |
+
x = self.patch_embed(x)
|
413 |
+
x = self.layer1(x)
|
414 |
+
skip1 = x
|
415 |
+
|
416 |
+
x = self.patch_merge1(x)
|
417 |
+
x = self.layer2(x)
|
418 |
+
skip2 = x
|
419 |
+
|
420 |
+
x = self.patch_merge2(x)
|
421 |
+
x = self.layer3(x)
|
422 |
+
x = self.patch_split1(x)
|
423 |
+
|
424 |
+
x = self.fusion1([x, self.skip2(skip2)]) + x
|
425 |
+
x = self.layer4(x)
|
426 |
+
x = self.patch_split2(x)
|
427 |
+
|
428 |
+
x = self.fusion2([x, self.skip1(skip1)]) + x
|
429 |
+
x = self.layer5(x)
|
430 |
+
x = self.patch_unembed(x)
|
431 |
+
return x
|
432 |
+
|
433 |
+
|
434 |
+
class MCT(nn.Module):
|
435 |
+
def __init__(self):
|
436 |
+
super(MCT, self).__init__()
|
437 |
+
self.ts = 256
|
438 |
+
self.l = 8
|
439 |
+
|
440 |
+
self.dims = 3 * 3 * self.l
|
441 |
+
|
442 |
+
self.basenet = DehazeFormer(3, self.dims)
|
443 |
+
|
444 |
+
def get_coord(self, x):
|
445 |
+
B, _, H, W = x.size()
|
446 |
+
|
447 |
+
coordh, coordw = torch.meshgrid([torch.linspace(-1,1,H), torch.linspace(-1,1,W)], indexing="ij")
|
448 |
+
coordh = coordh.unsqueeze(0).unsqueeze(1).repeat(B,1,1,1)
|
449 |
+
coordw = coordw.unsqueeze(0).unsqueeze(1).repeat(B,1,1,1)
|
450 |
+
|
451 |
+
return coordw.detach(), coordh.detach()
|
452 |
+
|
453 |
+
def mapping(self, x, param):
|
454 |
+
# curves
|
455 |
+
curve = torch.stack(torch.chunk(param, 3, dim=1), dim=1)
|
456 |
+
curve_list = list(torch.chunk(curve, 3, dim=2))
|
457 |
+
|
458 |
+
# grid: x, y, z -> w, h, d ~[-1 ,1]
|
459 |
+
x_list = list(torch.chunk(x.detach(), 3, dim=1))
|
460 |
+
coordw, coordh = self.get_coord(x)
|
461 |
+
grid_list = [torch.stack([coordw, coordh, x_i], dim=4) for x_i in x_list]
|
462 |
+
|
463 |
+
# mapping
|
464 |
+
out = sum([F.grid_sample(curve_i, grid_i, 'bilinear', 'border', True) \
|
465 |
+
for curve_i, grid_i in zip(curve_list, grid_list)]).squeeze(2)
|
466 |
+
|
467 |
+
return out # no Tanh is much better than using Tanh
|
468 |
+
|
469 |
+
def forward(self, x):
|
470 |
+
# param input
|
471 |
+
x_d = F.interpolate(x, (self.ts, self.ts), mode='area')
|
472 |
+
param = self.basenet(x_d)
|
473 |
+
out = self.mapping(x, param)
|
474 |
+
return out
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
Pillow
|
saved_models/dehazeformer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:479e2017166ed8f97edcde059db759b38cc89388da5e456881ed8892ba35f0d7
|
3 |
+
size 5927945
|