File size: 15,579 Bytes
2532eca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.nn.init import _calculate_fan_in_and_fan_out
from timm.models.layers import to_2tuple, trunc_normal_
import torchvision.transforms as transforms
from torchvision import models
import gradio as gr
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
class RLN(nn.Module):
r"""Revised LayerNorm"""
def __init__(self, dim, eps=1e-5, detach_grad=False):
super(RLN, self).__init__()
self.eps = eps
self.detach_grad = detach_grad
self.weight = nn.Parameter(torch.ones((1, dim, 1, 1)))
self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1)))
self.meta1 = nn.Conv2d(1, dim, 1)
self.meta2 = nn.Conv2d(1, dim, 1)
trunc_normal_(self.meta1.weight, std=.02)
nn.init.constant_(self.meta1.bias, 1)
trunc_normal_(self.meta2.weight, std=.02)
nn.init.constant_(self.meta2.bias, 0)
def forward(self, input):
mean = torch.mean(input, dim=(1, 2, 3), keepdim=True)
std = torch.sqrt((input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps)
normalized_input = (input - mean) / std
if self.detach_grad:
rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach())
else:
rescale, rebias = self.meta1(std), self.meta2(mean)
out = normalized_input * self.weight + self.bias
return out, rescale, rebias
class Mlp(nn.Module):
def __init__(self, network_depth, in_features, hidden_features=None, out_features=None):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.network_depth = network_depth
self.mlp = nn.Sequential(
nn.Conv2d(in_features, hidden_features, 1),
nn.ReLU(True),
nn.Conv2d(hidden_features, out_features, 1)
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
gain = (8 * self.network_depth) ** (-1/4)
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
trunc_normal_(m.weight, std=std)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
return self.mlp(x)
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C)
return windows
def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def get_relative_positions(window_size):
coords_h = torch.arange(window_size)
coords_w = torch.arange(window_size)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_positions = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_positions = relative_positions.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_positions_log = torch.sign(relative_positions) * torch.log(1. + relative_positions.abs())
return relative_positions_log
class WindowAttention(nn.Module):
def __init__(self, dim, window_size, num_heads):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
relative_positions = get_relative_positions(self.window_size)
self.register_buffer("relative_positions", relative_positions)
self.meta = nn.Sequential(
nn.Linear(2, 256, bias=True),
nn.ReLU(True),
nn.Linear(256, num_heads, bias=True)
)
self.softmax = nn.Softmax(dim=-1)
def forward(self, qkv):
B_, N, _ = qkv.shape
qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.meta(self.relative_positions)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim)
return x
class Attention(nn.Module):
def __init__(self, network_depth, dim, num_heads, window_size, shift_size, use_attn=False, conv_type=None):
super().__init__()
self.dim = dim
self.head_dim = int(dim // num_heads)
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.network_depth = network_depth
self.use_attn = use_attn
self.conv_type = conv_type
if self.conv_type == 'Conv':
self.conv = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect'),
nn.ReLU(True),
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect')
)
if self.conv_type == 'DWConv':
self.conv = nn.Conv2d(dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode='reflect')
if self.conv_type == 'DWConv' or self.use_attn:
self.V = nn.Conv2d(dim, dim, 1)
self.proj = nn.Conv2d(dim, dim, 1)
if self.use_attn:
self.QK = nn.Conv2d(dim, dim * 2, 1)
self.attn = WindowAttention(dim, window_size, num_heads)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
w_shape = m.weight.shape
if w_shape[0] == self.dim * 2: # QK
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
std = math.sqrt(2.0 / float(fan_in + fan_out))
trunc_normal_(m.weight, std=std)
else:
gain = (8 * self.network_depth) ** (-1/4)
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
trunc_normal_(m.weight, std=std)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def check_size(self, x, shift=False):
_, _, h, w = x.size()
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
if shift:
x = F.pad(x, (self.shift_size, (self.window_size-self.shift_size+mod_pad_w) % self.window_size,
self.shift_size, (self.window_size-self.shift_size+mod_pad_h) % self.window_size), mode='reflect')
else:
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
return x
def forward(self, X):
B, C, H, W = X.shape
if self.conv_type == 'DWConv' or self.use_attn:
V = self.V(X)
if self.use_attn:
QK = self.QK(X)
QKV = torch.cat([QK, V], dim=1)
# shift
shifted_QKV = self.check_size(QKV, self.shift_size > 0)
Ht, Wt = shifted_QKV.shape[2:]
# partition windows
shifted_QKV = shifted_QKV.permute(0, 2, 3, 1)
qkv = window_partition(shifted_QKV, self.window_size) # nW*B, window_size**2, C
attn_windows = self.attn(qkv)
# merge windows
shifted_out = window_reverse(attn_windows, self.window_size, Ht, Wt) # B H' W' C
# reverse cyclic shift
out = shifted_out[:, self.shift_size:(self.shift_size+H), self.shift_size:(self.shift_size+W), :]
attn_out = out.permute(0, 3, 1, 2)
if self.conv_type in ['Conv', 'DWConv']:
conv_out = self.conv(V)
out = self.proj(conv_out + attn_out)
else:
out = self.proj(attn_out)
else:
if self.conv_type == 'Conv':
out = self.conv(X) # no attention and use conv, no projection
elif self.conv_type == 'DWConv':
out = self.proj(self.conv(V))
return out
class TransformerBlock(nn.Module):
def __init__(self, network_depth, dim, num_heads, mlp_ratio=4.,
norm_layer=nn.LayerNorm, mlp_norm=False,
window_size=8, shift_size=0, use_attn=True, conv_type=None):
super().__init__()
self.use_attn = use_attn
self.mlp_norm = mlp_norm
self.norm1 = norm_layer(dim) if use_attn else nn.Identity()
self.attn = Attention(network_depth, dim, num_heads=num_heads, window_size=window_size,
shift_size=shift_size, use_attn=use_attn, conv_type=conv_type)
self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity()
self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio))
def forward(self, x):
identity = x
if self.use_attn: x, rescale, rebias = self.norm1(x)
x = self.attn(x)
if self.use_attn: x = x * rescale + rebias
x = identity + x
identity = x
if self.use_attn and self.mlp_norm: x, rescale, rebias = self.norm2(x)
x = self.mlp(x)
if self.use_attn and self.mlp_norm: x = x * rescale + rebias
x = identity + x
return x
class BasicLayer(nn.Module):
def __init__(self, network_depth, dim, depth, num_heads, mlp_ratio=4.,
norm_layer=nn.LayerNorm, window_size=8,
attn_ratio=0., attn_loc='last', conv_type=None):
super().__init__()
self.dim = dim
self.depth = depth
attn_depth = attn_ratio * depth
if attn_loc == 'last':
use_attns = [i >= depth-attn_depth for i in range(depth)]
elif attn_loc == 'first':
use_attns = [i < attn_depth for i in range(depth)]
elif attn_loc == 'middle':
use_attns = [i >= (depth-attn_depth)//2 and i < (depth+attn_depth)//2 for i in range(depth)]
# build blocks
self.blocks = nn.ModuleList([
TransformerBlock(network_depth=network_depth,
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
use_attn=use_attns[i], conv_type=conv_type)
for i in range(depth)])
def forward(self, x):
for blk in self.blocks:
x = blk(x)
return x
class PatchEmbed(nn.Module):
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None):
super().__init__()
self.in_chans = in_chans
self.embed_dim = embed_dim
if kernel_size is None:
kernel_size = patch_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size,
padding=(kernel_size-patch_size+1)//2, padding_mode='reflect')
def forward(self, x):
x = self.proj(x)
return x
class PatchUnEmbed(nn.Module):
def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None):
super().__init__()
self.out_chans = out_chans
self.embed_dim = embed_dim
if kernel_size is None:
kernel_size = 1
self.proj = nn.Sequential(
nn.Conv2d(embed_dim, out_chans*patch_size**2, kernel_size=kernel_size,
padding=kernel_size//2, padding_mode='reflect'),
nn.PixelShuffle(patch_size)
)
def forward(self, x):
x = self.proj(x)
return x
class SKFusion(nn.Module):
def __init__(self, dim, height=2, reduction=8):
super(SKFusion, self).__init__()
self.height = height
d = max(int(dim/reduction), 4)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.mlp = nn.Sequential(
nn.Conv2d(dim, d, 1, bias=False),
nn.ReLU(),
nn.Conv2d(d, dim*height, 1, bias=False)
)
self.softmax = nn.Softmax(dim=1)
def forward(self, in_feats):
B, C, H, W = in_feats[0].shape
in_feats = torch.cat(in_feats, dim=1)
in_feats = in_feats.view(B, self.height, C, H, W)
feats_sum = torch.sum(in_feats, dim=1)
attn = self.mlp(self.avg_pool(feats_sum))
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
out = torch.sum(in_feats*attn, dim=1)
return out
class DehazeFormer(nn.Module):
def __init__(self, in_chans=3, out_chans=4, window_size=8,
embed_dims=[24, 48, 96, 48, 24],
mlp_ratios=[2., 4., 4., 2., 2.],
depths=[16, 16, 16, 8, 8],
num_heads=[2, 4, 6, 1, 1],
attn_ratio=[1/4, 1/2, 3/4, 0, 0],
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'],
norm_layer=[RLN, RLN, RLN, RLN, RLN]):
super(DehazeFormer, self).__init__()
# setting
self.patch_size = 4
self.window_size = window_size
self.mlp_ratios = mlp_ratios
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3)
# backbone
self.layer1 = BasicLayer(network_depth=sum(depths), dim=embed_dims[0], depth=depths[0],
num_heads=num_heads[0], mlp_ratio=mlp_ratios[0],
norm_layer=norm_layer[0], window_size=window_size,
attn_ratio=attn_ratio[0], attn_loc='last', conv_type=conv_type[0])
self.patch_merge1 = PatchEmbed(
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)
self.layer2 = BasicLayer(network_depth=sum(depths), dim=embed_dims[1], depth=depths[1],
num_heads=num_heads[1], mlp_ratio=mlp_ratios[1],
norm_layer=norm_layer[1], window_size=window_size,
attn_ratio=attn_ratio[1], attn_loc='last', conv_type=conv_type[1])
self.patch_merge2 = PatchEmbed(
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)
self.layer3 = BasicLayer(network_depth=sum(depths), dim=embed_dims[2], depth=depths[2],
num_heads=num_heads[2], mlp_ratio=mlp_ratios[2],
norm_layer=norm_layer[2], window_size=window_size,
attn_ratio=attn_ratio[2], attn_loc='last', conv_type=conv_type[2])
self.patch_split1 = PatchUnEmbed(
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2])
assert embed_dims[1] == embed_dims[3]
self.fusion1 = SKFusion(embed_dims[3])
self.layer4 = BasicLayer(network_depth=sum(depths), dim=embed_dims[3], depth=depths[3],
num_heads=num_heads[3], mlp_ratio=mlp_ratios[3],
norm_layer=norm_layer[3], window_size=window_size,
attn_ratio=attn_ratio[3], attn_loc='last', conv_type=conv_type[3])
self.patch_split2 = PatchUnEmbed(
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3])
assert embed_dims[0] == embed_dims[4]
self.fusion2 = SKFusion(embed_dims[4])
self.layer5 = BasicLayer(network_depth=sum(depths), dim=embed_dims[4], depth=depths[4],
num_heads=num_heads[4], mlp_ratio=mlp_ratios[4],
norm_layer=norm_layer[4], window_size=window_size,
attn_ratio=attn_ratio[4], attn_loc='last', conv_type=conv_type[4])
# merge non-overlapping patches into image
self.patch_unembed = PatchUnEmbed(
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3)
def check_image_size(self, x):
# NOTE: for I2I test
_, _, h, w = x.size()
mod_pad_h = (self.patch_size - h % self.patch_size) % self.patch_size
mod_pad_w = (self.patch_size - w % self.patch_size) % self.patch_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
return x
def forward_features(self, x):
x = self.patch_embed(x)
x = self.layer1(x)
skip1 = x
x = self.patch_merge1(x)
x = self.layer2(x)
skip2 = x
x = self.patch_merge2(x)
x = self.layer3(x)
x = self.patch_split1(x)
x = self.fusion1([x, self.skip2(skip2)]) + x
x = self.layer4(x)
x = self.patch_split2(x)
x = self.fusion2([x, self.skip1(skip1)]) + x
x = self.layer5(x)
x = self.patch_unembed(x)
return x
def forward(self, x):
H, W = x.shape[2:]
x = self.check_image_size(x)
feat = self.forward_features(x)
K, B = torch.split(feat, (1, 3), dim=1)
x = K * x - B + x
x = x[:, :, :H, :W]
return x
def dehazeformer_t():
return DehazeFormer(
embed_dims=[24, 48, 96, 48, 24],
mlp_ratios=[2., 4., 4., 2., 2.],
depths=[4, 4, 4, 2, 2],
num_heads=[2, 4, 6, 1, 1],
attn_ratio=[0, 1/2, 1, 0, 0],
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv']) |