|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
|
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
from timm.models.layers import to_2tuple, trunc_normal_ |
|
|
|
import torchvision.transforms as transforms |
|
from torchvision import models |
|
|
|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
from matplotlib import pyplot as plt |
|
from model import dehazeformer_t |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
print(f"Using {device} device") |
|
t_model_load = dehazeformer_t().to(device) |
|
t_model_load |
|
best_model_weights = torch.load('best_t_model_weights.pth') |
|
t_model_load.load_state_dict(best_model_weights) |
|
|
|
def pred_one_image(inp): |
|
one_image = np.array(inp.resize((256, 256)).convert("RGB"))/255 |
|
|
|
one_image = np.moveaxis(one_image, -1, 0) |
|
|
|
one_image = torch.tensor(one_image).float() |
|
one_image = one_image.unsqueeze(0) |
|
one_image = one_image.to(device) |
|
|
|
with torch.no_grad(): |
|
t_model_load.eval() |
|
output = t_model_load(one_image) |
|
print(output.shape) |
|
output = output[0].cpu().permute((1, 2, 0)) |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(output.numpy()) |
|
plt.axis("off") |
|
|
|
plt.savefig('image.png', format='png', dpi=300) |
|
out_img = Image.open('image.png') |
|
|
|
return out_img |
|
|
|
demo = gr.Interface(fn=pred_one_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil"), |
|
examples=[image_path], |
|
) |
|
|
|
demo.launch(debug=True) |
|
|