Spaces:
Runtime error
Runtime error
File size: 5,342 Bytes
3cf1901 e8354d3 3cf1901 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
os.system("pip install transformers")
os.system("pip3 install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1+cpu -f "
"https://download.pytorch.org/whl/cpu/torch_stable.html")
os.system("pip install mtranslate")
os.system("pip install requests")
os.system("pip install random")
import transformers
import json
import random
import requests
from mtranslate import translate
import streamlit as st
MODELS = {
"GPT-2 Model Recycled From English": {
"url": "https://api-inference.huggingface.co/models/GroNLP/gpt2-small-dutch"
},
}
PROMPT_LIST = {
"Er was eens...": ["Er was eens..."],
"Dag.": ["Hallo, mijn naam is "],
"Te zijn of niet te zijn?": ["Naar mijn mening is 'zijn'"],
}
def query(payload, model_name):
data = json.dumps(payload)
print("model url:", MODELS[model_name]["url"])
response = requests.request(
"POST", MODELS[model_name]["url"], headers={}, data=data
)
return json.loads(response.content.decode("utf-8"))
def process(
text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float
):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
},
}
return query(payload, model_name)
# Page
st.set_page_config(page_title="Dutch GPT-2 Demo")
st.title("Dutch GPT-2")
# Sidebar
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=100,
help="The maximum length of the sequence to be generated.",
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities.",
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
)
do_sample = st.sidebar.selectbox(
"Sampling?",
(True, False),
help="Whether or not to use sampling; use greedy decoding otherwise.",
)
# Body
st.markdown(
"""
Dutch GPT-2 model (small) is based on the English GPT-2 model:
Researches [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) and [M. Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475)
obtained this model by transfering the English GPT-2 model in multiple procedure while exploiting genetic closeness between Dutch and English.
During this process, they retrained the lexical embeddings of the original English GPT-2 model and did additional fine-tuning of the full Dutch model
for better text generation.
For more information on the model:
[arXiv](https://arxiv.org/abs/2012.05628)
[GitHub](https://github.com/wietsedv/gpt2-recycle)
"""
)
model_name = st.selectbox("Model", (list(MODELS.keys())))
ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"]
prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1)
if prompt == "Custom":
prompt_box = "Enter your text here"
else:
prompt_box = random.choice(PROMPT_LIST[prompt])
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
st.subheader("Result")
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(
text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
top_k=int(top_k),
top_p=float(top_p),
)
print("result:", result)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}.', end=" ")
if "estimated_time" in result:
st.write(
f'Please try again in about {result["estimated_time"]:.0f} seconds.'
)
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f"{error}")
else:
result = result[0]["generated_text"]
st.write(result.replace("\n", " \n"))
st.text("English translation")
st.write(translate(result, "en", "nl").replace("\n", " \n"))
st.subheader("Reference:")
st.markdown(
"""
```
@inproceedings{de-vries-nissim-2021-good,
title = "As Good as New. How to Successfully Recycle {E}nglish {GPT}-2 to Make Models for Other Languages",
author = "de Vries, Wietse and
Nissim, Malvina",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.74",
doi = "10.18653/v1/2021.findings-acl.74",
pages = "836--846",
}
```
"""
) |