Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install transformers") | |
os.system("pip3 install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1+cpu -f " | |
"https://download.pytorch.org/whl/cpu/torch_stable.html") | |
os.system("pip install mtranslate") | |
os.system("pip install requests") | |
os.system("pip install random") | |
import transformers | |
import json | |
import random | |
import requests | |
from mtranslate import translate | |
import streamlit as st | |
MODELS = { | |
"GPT-2 Model Recycled From English": { | |
"url": "https://api-inference.huggingface.co/models/GroNLP/gpt2-small-dutch" | |
}, | |
} | |
PROMPT_LIST = { | |
"Er was eens...": ["Er was eens..."], | |
"Dag.": ["Hallo, mijn naam is "], | |
"Te zijn of niet te zijn?": ["Naar mijn mening is 'zijn'"], | |
} | |
def query(payload, model_name): | |
data = json.dumps(payload) | |
print("model url:", MODELS[model_name]["url"]) | |
response = requests.request( | |
"POST", MODELS[model_name]["url"], headers={}, data=data | |
) | |
return json.loads(response.content.decode("utf-8")) | |
def process( | |
text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float | |
): | |
payload = { | |
"inputs": text, | |
"parameters": { | |
"max_new_tokens": max_len, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temp, | |
"repetition_penalty": 2.0, | |
}, | |
"options": { | |
"use_cache": True, | |
}, | |
} | |
return query(payload, model_name) | |
# Page | |
st.set_page_config(page_title="Dutch GPT-2 Demo") | |
st.title("Dutch GPT-2") | |
# Sidebar | |
st.sidebar.subheader("Configurable parameters") | |
max_len = st.sidebar.number_input( | |
"Maximum length", | |
value=100, | |
help="The maximum length of the sequence to be generated.", | |
) | |
temp = st.sidebar.slider( | |
"Temperature", | |
value=1.0, | |
min_value=0.1, | |
max_value=100.0, | |
help="The value used to module the next token probabilities.", | |
) | |
top_k = st.sidebar.number_input( | |
"Top k", | |
value=10, | |
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", | |
) | |
top_p = st.sidebar.number_input( | |
"Top p", | |
value=0.95, | |
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", | |
) | |
do_sample = st.sidebar.selectbox( | |
"Sampling?", | |
(True, False), | |
help="Whether or not to use sampling; use greedy decoding otherwise.", | |
) | |
# Body | |
st.markdown( | |
""" | |
Dutch GPT-2 model (small) is based on the English GPT-2 model: | |
Researches [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) and [M. Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) | |
obtained this model by transfering the English GPT-2 model in multiple procedure while exploiting genetic closeness between Dutch and English. | |
During this process, they retrained the lexical embeddings of the original English GPT-2 model and did additional fine-tuning of the full Dutch model | |
for better text generation. | |
For more information on the model: | |
[arXiv](https://arxiv.org/abs/2012.05628) | |
[GitHub](https://github.com/wietsedv/gpt2-recycle) | |
""" | |
) | |
model_name = st.selectbox("Model", (list(MODELS.keys()))) | |
ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"] | |
prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1) | |
if prompt == "Custom": | |
prompt_box = "Enter your text here" | |
else: | |
prompt_box = random.choice(PROMPT_LIST[prompt]) | |
text = st.text_area("Enter text", prompt_box) | |
if st.button("Run"): | |
with st.spinner(text="Getting results..."): | |
st.subheader("Result") | |
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}") | |
result = process( | |
text=text, | |
model_name=model_name, | |
max_len=int(max_len), | |
temp=temp, | |
top_k=int(top_k), | |
top_p=float(top_p), | |
) | |
print("result:", result) | |
if "error" in result: | |
if type(result["error"]) is str: | |
st.write(f'{result["error"]}.', end=" ") | |
if "estimated_time" in result: | |
st.write( | |
f'Please try again in about {result["estimated_time"]:.0f} seconds.' | |
) | |
else: | |
if type(result["error"]) is list: | |
for error in result["error"]: | |
st.write(f"{error}") | |
else: | |
result = result[0]["generated_text"] | |
st.write(result.replace("\n", " \n")) | |
st.text("English translation") | |
st.write(translate(result, "en", "nl").replace("\n", " \n")) | |
st.subheader("References:") | |
st.markdown( | |
""" | |
``` | |
@inproceedings{de-vries-nissim-2021-good, | |
title = "As Good as New. How to Successfully Recycle {E}nglish {GPT}-2 to Make Models for Other Languages", | |
author = "de Vries, Wietse and | |
Nissim, Malvina", | |
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", | |
month = aug, | |
year = "2021", | |
address = "Online", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2021.findings-acl.74", | |
doi = "10.18653/v1/2021.findings-acl.74", | |
pages = "836--846", | |
} | |
``` | |
""" | |
) |