azizbarank's picture
Update app.py
282b88e
import os
os.system("pip install transformers")
os.system("pip3 install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1+cpu -f "
"https://download.pytorch.org/whl/cpu/torch_stable.html")
os.system("pip install mtranslate")
os.system("pip install requests")
os.system("pip install random")
import transformers
import json
import random
import requests
from mtranslate import translate
import streamlit as st
MODELS = {
"GPT-2 Model Recycled From English": {
"url": "https://api-inference.huggingface.co/models/GroNLP/gpt2-small-dutch"
},
}
PROMPT_LIST = {
"Er was eens...": ["Er was eens..."],
"Dag.": ["Hallo, mijn naam is "],
"Te zijn of niet te zijn?": ["Naar mijn mening is 'zijn'"],
}
def query(payload, model_name):
data = json.dumps(payload)
print("model url:", MODELS[model_name]["url"])
response = requests.request(
"POST", MODELS[model_name]["url"], headers={}, data=data
)
return json.loads(response.content.decode("utf-8"))
def process(
text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float
):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
},
}
return query(payload, model_name)
# Page
st.set_page_config(page_title="Dutch GPT-2 Demo")
st.title("Dutch GPT-2")
# Sidebar
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=100,
help="The maximum length of the sequence to be generated.",
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities.",
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
)
do_sample = st.sidebar.selectbox(
"Sampling?",
(True, False),
help="Whether or not to use sampling; use greedy decoding otherwise.",
)
# Body
st.markdown(
"""
Dutch GPT-2 model (small) is based on the English GPT-2 model:
Researches [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) and [M. Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475)
obtained this model by transfering the English GPT-2 model in multiple procedure while exploiting genetic closeness between Dutch and English.
During this process, they retrained the lexical embeddings of the original English GPT-2 model and did additional fine-tuning of the full Dutch model
for better text generation.
For more information on the model:
[arXiv](https://arxiv.org/abs/2012.05628)
[GitHub](https://github.com/wietsedv/gpt2-recycle)
"""
)
model_name = st.selectbox("Model", (list(MODELS.keys())))
ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"]
prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1)
if prompt == "Custom":
prompt_box = "Enter your text here"
else:
prompt_box = random.choice(PROMPT_LIST[prompt])
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
st.subheader("Result")
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(
text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
top_k=int(top_k),
top_p=float(top_p),
)
print("result:", result)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}.', end=" ")
if "estimated_time" in result:
st.write(
f'Please try again in about {result["estimated_time"]:.0f} seconds.'
)
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f"{error}")
else:
result = result[0]["generated_text"]
st.write(result.replace("\n", " \n"))
st.text("English translation")
st.write(translate(result, "en", "nl").replace("\n", " \n"))
st.subheader("References:")
st.markdown(
"""
```
@inproceedings{de-vries-nissim-2021-good,
title = "As Good as New. How to Successfully Recycle {E}nglish {GPT}-2 to Make Models for Other Languages",
author = "de Vries, Wietse and
Nissim, Malvina",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.74",
doi = "10.18653/v1/2021.findings-acl.74",
pages = "836--846",
}
```
"""
)