Spaces:
Running
Running
File size: 9,756 Bytes
7ed59a1 49175b2 51d80c4 7ed59a1 49175b2 09cb397 51d80c4 046b80d 51d80c4 046b80d 7ed59a1 ad2df9a 046b80d 49175b2 7ed59a1 ad2df9a 046b80d ad2df9a 7ed59a1 046b80d ad2df9a 046b80d 49175b2 046b80d 0516f98 046b80d ad2df9a 4e9c5bd ad2df9a 4e9c5bd 046b80d ad2df9a 046b80d ad2df9a 046b80d 49175b2 046b80d 49175b2 046b80d 49175b2 046b80d 0516f98 046b80d 49175b2 046b80d ad2df9a 09cb397 4e9c5bd 09cb397 4e9c5bd 09cb397 ad2df9a 09cb397 4e9c5bd 09cb397 ad2df9a 4e9c5bd ad2df9a 09cb397 ad2df9a 4e9c5bd 09cb397 ad2df9a 49175b2 046b80d 09cb397 046b80d ad2df9a 046b80d ad2df9a 046b80d 4e9c5bd 046b80d 4e9c5bd ad2df9a 046b80d ad2df9a 4e9c5bd 046b80d ad2df9a 7ed59a1 046b80d 4e9c5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import json
import re
from typing import Optional, Dict, Any, Union, List, Tuple
from pydantic import BaseModel, Field, validator
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from variables import *
from metaprompt_router import metaprompt_router
class LLMResponse(BaseModel):
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
refined_prompt: str = Field(..., description="The refined version of the prompt")
explanation_of_refinements: Union[str, List[str]] = Field(..., description="Explanation of the refinements made")
response_content: Optional[Union[Dict[str, Any], str]] = Field(None, description="Raw response content")
@validator('response_content', pre=True)
def validate_response_content(cls, v):
if isinstance(v, str):
try:
return json.loads(v)
except json.JSONDecodeError:
return {"raw_content": v}
return v
@validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements')
def clean_text_fields(cls, v):
if isinstance(v, str):
return v.strip().replace('\\n', '\n').replace('\\"', '"')
elif isinstance(v, list):
return [item.strip().replace('\\n', '\n').replace('\\"', '"').replace('•', '-')
for item in v if isinstance(item, str)]
return v
class PromptRefiner:
def __init__(self, api_token: str, meta_prompts: dict, metaprompt_explanations: dict):
self.client = InferenceClient(token=api_token, timeout=120)
self.meta_prompts = meta_prompts
self.metaprompt_explanations = metaprompt_explanations
def _clean_json_string(self, content: str) -> str:
"""Clean and prepare JSON string for parsing."""
content = content.replace('•', '-')
content = re.sub(r'\s+', ' ', content)
content = content.replace('\\"', '"')
return content.strip()
def _parse_response(self, response_content: str) -> dict:
"""Parse the LLM response with enhanced error handling."""
try:
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = self._clean_json_string(json_match.group(1))
try:
parsed_json = json.loads(json_str)
print(parsed_json)
if isinstance(parsed_json, str):
parsed_json = json.loads(parsed_json)
prompt_analysis = f"""
#### Original prompt analysis
- {parsed_json.get("initial_prompt_evaluation", "")}
"""
explanation_of_refinements=f"""
#### Refinement Explanation
- {parsed_json.get("explanation_of_refinements", "")}
"""
return {
"initial_prompt_evaluation": prompt_analysis,
"refined_prompt": parsed_json.get("refined_prompt", ""),
"explanation_of_refinements": explanation_of_refinements,
"response_content": parsed_json
}
except json.JSONDecodeError:
return self._parse_with_regex(json_str)
return self._parse_with_regex(response_content)
except Exception as e:
print(f"Error parsing response: {str(e)}")
return self._create_error_dict(str(e))
def _parse_with_regex(self, content: str) -> dict:
"""Parse content using regex when JSON parsing fails."""
output = {}
refinements_match = re.search(r'"explanation_of_refinements":\s*$(.*?)$', content, re.DOTALL)
if refinements_match:
refinements_str = refinements_match.group(1)
refinements = [
item.strip().strip('"').strip("'").replace('•', '-')
for item in re.findall(r'[•"]([^"•]+)[•"]', refinements_str)
]
output["explanation_of_refinements"] = refinements
else:
pattern = r'"explanation_of_refinements":\s*"(.*?)"(?:,|\})'
match = re.search(pattern, content, re.DOTALL)
output["explanation_of_refinements"] = match.group(1).strip() if match else ""
for key in ["initial_prompt_evaluation", "refined_prompt"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, content, re.DOTALL)
output[key] = match.group(1).strip() if match else ""
output["response_content"] = {"raw_content": content}
print(content)
return output
def _create_error_dict(self, error_message: str) -> dict:
"""Create a standardized error response dictionary."""
return {
"initial_prompt_evaluation": f"Error parsing response: {error_message}",
"refined_prompt": "",
"explanation_of_refinements": "",
"response_content": {"error": error_message}
}
def automatic_metaprompt(self, prompt: str) -> Tuple[str, str]:
"""Automatically select the most appropriate metaprompt."""
try:
router_messages = [
{
"role": "system",
"content": "You are an AI Prompt Selection Assistant that helps choose the most appropriate metaprompt based on the user's query."
},
{
"role": "user",
"content": metaprompt_router.replace("[Insert initial prompt here]", prompt)
}
]
router_response = self.client.chat_completion(
model=prompt_refiner_model,
messages=router_messages,
max_tokens=3000,
temperature=0.2
)
router_content = router_response.choices[0].message.content.strip()
json_match = re.search(r'<json>(.*?)</json>', router_content, re.DOTALL)
if not json_match:
raise ValueError("No JSON found in router response")
router_result = json.loads(json_match.group(1))
recommended_key = router_result["recommended_metaprompt"]["key"]
metaprompt_analysis = f"""
#### Selected MetaPrompt
- **Primary Choice**: {router_result["recommended_metaprompt"]["name"]}
- *Description*: {router_result["recommended_metaprompt"]["description"]}
- *Why This Choice*: {router_result["recommended_metaprompt"]["explanation"]}
- *Similar Sample*: {router_result["recommended_metaprompt"]["similar_sample"]}
- *Customized Sample*: {router_result["recommended_metaprompt"]["customized_sample"]}
#### Alternative Option
- **Secondary Choice**: {router_result["alternative_recommendation"]["name"]}
- *Why Consider This*: {router_result["alternative_recommendation"]["explanation"]}
"""
return metaprompt_analysis, recommended_key
except Exception as e:
return f"Error in automatic metaprompt: {str(e)}", ""
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]:
"""Refine the given prompt using the selected meta prompt."""
try:
selected_meta_prompt = self.meta_prompts.get(meta_prompt_choice)
selected_meta_prompt_explanations = self.metaprompt_explanations.get(meta_prompt_choice)
messages = [
{
"role": "system",
"content": 'You are an expert at refining and extending prompts.'
},
{
"role": "user",
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
}
]
response = self.client.chat_completion(
model=prompt_refiner_model,
messages=messages,
max_tokens=3000,
temperature=0.8
)
result = self._parse_response(response.choices[0].message.content.strip())
llm_response = LLMResponse(**result)
llm_response_dico={}
llm_response_dico['initial_prompt']=prompt
llm_response_dico['meta_prompt']=meta_prompt_choice
llm_response_dico=llm_response_dico | llm_response.dict()
return (
llm_response.initial_prompt_evaluation,
llm_response.refined_prompt,
llm_response.explanation_of_refinements,
llm_response_dico
)
except Exception as e:
return (
f"Error: {str(e)}",
"",
"",
{}
)
def apply_prompt(self, prompt: str, model: str) -> str:
"""Apply formatting to the prompt using the specified model."""
try:
if not prompt or not model:
return "Error: Prompt and model are required"
messages = [
{
"role": "system",
"content": "You are a markdown formatting expert."
},
{
"role": "user",
"content": prompt
}
]
response = self.client.chat_completion(
model=model,
messages=messages,
max_tokens=3000,
temperature=0.8,
stream=False # Mode non-stream
)
# Accès direct à la réponse puisque stream=False
result = response.choices[0].message.content.strip()
return f"""{result}"""
except Exception as e:
return f"Error: {str(e)}" |