File size: 5,707 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import time
import torch
import cv2
from PIL import Image, ImageDraw, ImageOps
import numpy as np
from typing import Union
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
import PIL
from .mask_painter import mask_painter


class BaseSegmenter:
    def __init__(self, SAM_checkpoint, model_type, device='cuda:0'):
        """
        device: model device
        SAM_checkpoint: path of SAM checkpoint
        model_type: vit_b, vit_l, vit_h
        """
        print(f"Initializing BaseSegmenter to {device}")
        assert model_type in ['vit_b', 'vit_l', 'vit_h'], 'model_type must be vit_b, vit_l, or vit_h'

        self.device = device
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
        self.model = sam_model_registry[model_type](checkpoint=SAM_checkpoint)
        self.model.to(device=self.device)
        self.predictor = SamPredictor(self.model)
        self.embedded = False

    @torch.no_grad()
    def set_image(self, image: np.ndarray):
        # PIL.open(image_path) 3channel: RGB
        # image embedding: avoid encode the same image multiple times
        self.orignal_image = image
        if self.embedded:
            print('repeat embedding, please reset_image.')
            return
        self.predictor.set_image(image)
        self.embedded = True
        return
    
    @torch.no_grad()
    def reset_image(self):
        # reset image embeding
        self.predictor.reset_image()
        self.embedded = False

    def predict(self, prompts, mode, multimask=True):
        """
        image: numpy array, h, w, 3
        prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input'
        prompts['point_coords']: numpy array [N,2]
        prompts['point_labels']: numpy array [1,N]
        prompts['mask_input']: numpy array [1,256,256]
        mode: 'point' (points only), 'mask' (mask only), 'both' (consider both)
        mask_outputs: True (return 3 masks), False (return 1 mask only)
        whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :]
        """
        assert self.embedded, 'prediction is called before set_image (feature embedding).'
        assert mode in ['point', 'mask', 'both'], 'mode must be point, mask, or both'
        
        if mode == 'point':
            masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], 
                                point_labels=prompts['point_labels'], 
                                multimask_output=multimask)
        elif mode == 'mask':
            masks, scores, logits = self.predictor.predict(mask_input=prompts['mask_input'], 
                                multimask_output=multimask)
        elif mode == 'both':   # both
            masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], 
                                point_labels=prompts['point_labels'], 
                                mask_input=prompts['mask_input'], 
                                multimask_output=multimask)
        else:
            raise("Not implement now!")
        # masks (n, h, w), scores (n,), logits (n, 256, 256)
        return masks, scores, logits


if __name__ == "__main__":
    # load and show an image
    image = cv2.imread('/hhd3/gaoshang/truck.jpg')
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # numpy array (h, w, 3)

    # initialise BaseSegmenter
    SAM_checkpoint= '/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth'
    model_type = 'vit_h'
    device = "cuda:4"
    base_segmenter = BaseSegmenter(SAM_checkpoint=SAM_checkpoint, model_type=model_type, device=device)
    
    # image embedding (once embedded, multiple prompts can be applied)
    base_segmenter.set_image(image)
    
    # examples
    # point only ------------------------
    mode = 'point'
    prompts = {
        'point_coords': np.array([[500, 375], [1125, 625]]),
        'point_labels': np.array([1, 1]), 
    }
    masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=False)  # masks (n, h, w), scores (n,), logits (n, 256, 256)
    painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8)
    painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR)  # numpy array (h, w, 3)
    cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image)

    # both ------------------------
    mode = 'both'
    mask_input  = logits[np.argmax(scores), :, :]
    prompts = {'mask_input': mask_input [None, :, :]}
    prompts = {
        'point_coords': np.array([[500, 375], [1125, 625]]),
        'point_labels': np.array([1, 0]), 
        'mask_input': mask_input[None, :, :]
    }
    masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True)  # masks (n, h, w), scores (n,), logits (n, 256, 256)
    painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8)
    painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR)  # numpy array (h, w, 3)
    cv2.imwrite('/hhd3/gaoshang/truck_both.jpg', painted_image)

    # mask only ------------------------
    mode = 'mask'
    mask_input  = logits[np.argmax(scores), :, :]
    
    prompts = {'mask_input': mask_input[None, :, :]}
    
    masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True)  # masks (n, h, w), scores (n,), logits (n, 256, 256)
    painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8)
    painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR)  # numpy array (h, w, 3)
    cv2.imwrite('/hhd3/gaoshang/truck_mask.jpg', painted_image)