Track-Anything / tracker /model /group_modules.py
watchtowerss's picture
track-anything --version 1
4d1ebf3
raw
history blame
2.56 kB
"""
Group-specific modules
They handle features that also depends on the mask.
Features are typically of shape
batch_size * num_objects * num_channels * H * W
All of them are permutation equivariant w.r.t. to the num_objects dimension
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def interpolate_groups(g, ratio, mode, align_corners):
batch_size, num_objects = g.shape[:2]
g = F.interpolate(g.flatten(start_dim=0, end_dim=1),
scale_factor=ratio, mode=mode, align_corners=align_corners)
g = g.view(batch_size, num_objects, *g.shape[1:])
return g
def upsample_groups(g, ratio=2, mode='bilinear', align_corners=False):
return interpolate_groups(g, ratio, mode, align_corners)
def downsample_groups(g, ratio=1/2, mode='area', align_corners=None):
return interpolate_groups(g, ratio, mode, align_corners)
class GConv2D(nn.Conv2d):
def forward(self, g):
batch_size, num_objects = g.shape[:2]
g = super().forward(g.flatten(start_dim=0, end_dim=1))
return g.view(batch_size, num_objects, *g.shape[1:])
class GroupResBlock(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
if in_dim == out_dim:
self.downsample = None
else:
self.downsample = GConv2D(in_dim, out_dim, kernel_size=3, padding=1)
self.conv1 = GConv2D(in_dim, out_dim, kernel_size=3, padding=1)
self.conv2 = GConv2D(out_dim, out_dim, kernel_size=3, padding=1)
def forward(self, g):
out_g = self.conv1(F.relu(g))
out_g = self.conv2(F.relu(out_g))
if self.downsample is not None:
g = self.downsample(g)
return out_g + g
class MainToGroupDistributor(nn.Module):
def __init__(self, x_transform=None, method='cat', reverse_order=False):
super().__init__()
self.x_transform = x_transform
self.method = method
self.reverse_order = reverse_order
def forward(self, x, g):
num_objects = g.shape[1]
if self.x_transform is not None:
x = self.x_transform(x)
if self.method == 'cat':
if self.reverse_order:
g = torch.cat([g, x.unsqueeze(1).expand(-1,num_objects,-1,-1,-1)], 2)
else:
g = torch.cat([x.unsqueeze(1).expand(-1,num_objects,-1,-1,-1), g], 2)
elif self.method == 'add':
g = x.unsqueeze(1).expand(-1,num_objects,-1,-1,-1) + g
else:
raise NotImplementedError
return g