Spaces:
Sleeping
Sleeping
import requests | |
import gradio as gr | |
import torch | |
from timm import create_model | |
from timm.data import resolve_data_config | |
from timm.data.transforms_factory import create_transform | |
IMAGENET_1K_URL = 'https://storage.googleapis.com/bit_models/ilsvrc2012_1k_wordnet_lemmas.txt' | |
IMAGENET_1K_LABELS = requests.get(IMAGENET_1K_URL).text.strip().split('\n') | |
model = create_model('resnet50', pretrained=True) | |
transform = create_transform( | |
**resolve_data_config({}, model=model)) | |
model.eval() | |
def predict(image): | |
img = image.convert('RGB') | |
transformed_image = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
out = model(transformed_image) | |
probabilities = torch.nn.functional.softmax(out[0], dim=0) | |
values, indices = torch.topk(probabilities, k=5) | |
return {IMAGENET_1K_LABELS[i]: v.item() for i, v in zip(indices, values)} | |
gr.Interface(predict, gr.inputs.Image(type='pil'), | |
outputs='label').launch() | |