import transformers import torch import gradio as gr import os # Retrieve Hugging Face API token from environment variable hf_token = os.getenv("HF_TOKEN") # Ensure the token is available if not hf_token: raise ValueError("Hugging Face token not found. Please add it to the secrets in Hugging Face Spaces.") # Load the chatbot model with the token (for private models or usage limits) model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", use_auth_token=hf_token # Use the Hugging Face token here ) # Predefined data example_data = [ {"Institution": "A", "TLR": 70, "GO": 85, "OI": 90, "PR": 75}, {"Institution": "B", "TLR": 80, "GO": 88, "OI": 85, "PR": 90}, {"Institution": "C", "TLR": 65, "GO": 80, "OI": 70, "PR": 60}, ] # Format predefined data into a readable string predefined_context = "Here are the institution rankings based on scores:\n" for institution in sorted(example_data, key=lambda x: x["TLR"] + x["GO"] + x["OI"] + x["PR"], reverse=True): total_score = institution["TLR"] + institution["GO"] + institution["OI"] + institution["PR"] predefined_context += f"- {institution['Institution']} (Total Score: {total_score})\n" # System prompt to provide context to the model system_prompt = f"""You are an intelligent assistant. Here is some contextual information: {predefined_context} When a user asks about rankings, respond with this information. If the user asks general questions, respond appropriately. """ # Chatbot function def chatbot_response(user_message): # Combine system prompt with the user's message full_prompt = f"{system_prompt}\nUser: {user_message}\nAssistant:" # Generate a response using the model outputs = pipeline( full_prompt, max_new_tokens=150, # Adjust token limit as needed do_sample=True, temperature=0.7, top_p=0.9, ) return outputs[0]["generated_text"] # Gradio interface def build_gradio_ui(): with gr.Blocks() as demo: gr.Markdown("## Intelligent Chatbot with Predefined Context and AI Responses") gr.Markdown("Ask about institution rankings or any general query!") with gr.Row(): user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") chatbot_output = gr.Textbox(label="Chatbot Response", interactive=False) submit_button = gr.Button("Send") submit_button.click(chatbot_response, inputs=[user_input], outputs=[chatbot_output]) return demo # Launch the Gradio app with a public link demo = build_gradio_ui() if __name__ == "__main__": demo.launch(share=True) # Enable public link