Spaces:
Runtime error
Runtime error
barathm111
commited on
Commit
•
d29a8b2
1
Parent(s):
fb4eb7d
Upload 3 files
Browse files- main.py +74 -0
- performance_analyzer.py +229 -0
- requirements.txt +3 -1
main.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from performance_analyzer import CollegePerformanceAnalyzer
|
3 |
+
|
4 |
+
def run_performance_analysis(seed: int = None, use_ai_insights: bool = True):
|
5 |
+
"""
|
6 |
+
Main function to orchestrate college performance analysis.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
seed (int, optional): Random seed for reproducible results
|
10 |
+
use_ai_insights (bool): Toggle AI-generated strategic insights
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
Comprehensive performance analysis report
|
14 |
+
"""
|
15 |
+
# Initialize performance analyzer
|
16 |
+
analyzer = CollegePerformanceAnalyzer()
|
17 |
+
|
18 |
+
# Generate performance scores
|
19 |
+
parameters = analyzer.generate_performance_scores(seed)
|
20 |
+
|
21 |
+
# Calculate comprehensive metrics
|
22 |
+
analysis_results = analyzer.calculate_weighted_metrics(parameters)
|
23 |
+
|
24 |
+
# Generate feedback based on user preference
|
25 |
+
ai_feedback = (
|
26 |
+
analyzer.generate_ai_feedback(analysis_results)
|
27 |
+
if use_ai_insights
|
28 |
+
else analyzer._generate_manual_feedback(analysis_results)
|
29 |
+
)
|
30 |
+
|
31 |
+
# Combine performance report with strategic insights
|
32 |
+
report = f"""
|
33 |
+
# 🎓 College Performance Analysis Report
|
34 |
+
|
35 |
+
## Performance Metrics
|
36 |
+
|
37 |
+
{' '.join([
|
38 |
+
f"**{details['full_name']}**: {details['score']}/100 "
|
39 |
+
for param, details in analysis_results['parameters'].items()
|
40 |
+
])}
|
41 |
+
|
42 |
+
## Overall Performance
|
43 |
+
|
44 |
+
- **Total Weighted Score**: {analysis_results['total_weighted_score']:.2f}
|
45 |
+
- **Predicted NIRF Rank**: {analysis_results['nirf_rank']}
|
46 |
+
- **Institutional Rating**: {analysis_results['overall_rating']}/5
|
47 |
+
|
48 |
+
## Strategic Insights
|
49 |
+
|
50 |
+
{ai_feedback}
|
51 |
+
"""
|
52 |
+
|
53 |
+
return report
|
54 |
+
|
55 |
+
def create_gradio_interface():
|
56 |
+
"""
|
57 |
+
Create interactive Gradio web interface for performance analysis.
|
58 |
+
"""
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=run_performance_analysis,
|
61 |
+
inputs=[
|
62 |
+
gr.Number(label="Random Seed (Optional)", precision=0, optional=True),
|
63 |
+
gr.Checkbox(label="Generate AI Insights", value=True)
|
64 |
+
],
|
65 |
+
outputs=gr.Markdown(label="Performance Analysis Report"),
|
66 |
+
title="🏫 College Performance Analyzer",
|
67 |
+
description="Generate comprehensive performance insights with optional AI-powered strategic analysis.",
|
68 |
+
theme="default"
|
69 |
+
)
|
70 |
+
return iface
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
interface = create_gradio_interface()
|
74 |
+
interface.launch()
|
performance_analyzer.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from typing import Dict, Any
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
|
6 |
+
class CollegePerformanceAnalyzer:
|
7 |
+
def __init__(self):
|
8 |
+
"""
|
9 |
+
Initialize the College Performance Analyzer with secure token management.
|
10 |
+
|
11 |
+
This method handles:
|
12 |
+
- Retrieving Hugging Face token from environment secrets
|
13 |
+
- Initializing the Inference Client
|
14 |
+
- Setting up performance parameters
|
15 |
+
"""
|
16 |
+
try:
|
17 |
+
# Securely retrieve HF token from environment variables
|
18 |
+
hf_token = os.environ.get('HF_TOKEN')
|
19 |
+
|
20 |
+
if not hf_token:
|
21 |
+
raise ValueError("No Hugging Face token found. Please set it as a Space secret.")
|
22 |
+
|
23 |
+
# Initialize Inference Client with secure token
|
24 |
+
self.client = InferenceClient(
|
25 |
+
model="mistralai/Mistral-7B-Instruct-v0.1",
|
26 |
+
token=hf_token
|
27 |
+
)
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Inference Client Error: {e}")
|
30 |
+
self.client = None
|
31 |
+
|
32 |
+
# Define performance parameters
|
33 |
+
self.parameters = self.define_performance_parameters()
|
34 |
+
|
35 |
+
def define_performance_parameters(self) -> Dict[str, Dict[str, Any]]:
|
36 |
+
"""
|
37 |
+
Define comprehensive college performance parameters with weights.
|
38 |
+
|
39 |
+
Returns a dictionary of parameters with:
|
40 |
+
- Weight in overall performance
|
41 |
+
- Full descriptive name
|
42 |
+
"""
|
43 |
+
return {
|
44 |
+
"SS": {
|
45 |
+
"weight": 0.06,
|
46 |
+
"full_name": "Student Strength",
|
47 |
+
"description": "Total student population and diversity"
|
48 |
+
},
|
49 |
+
"FSR": {
|
50 |
+
"weight": 0.075,
|
51 |
+
"full_name": "Faculty-Student Ratio",
|
52 |
+
"description": "Quality of academic interaction and support"
|
53 |
+
},
|
54 |
+
"FQE": {
|
55 |
+
"weight": 0.06,
|
56 |
+
"full_name": "Faculty Qualification Efficiency",
|
57 |
+
"description": "Academic credentials and expertise of faculty"
|
58 |
+
},
|
59 |
+
"FRU": {
|
60 |
+
"weight": 0.06,
|
61 |
+
"full_name": "Faculty Research Utility",
|
62 |
+
"description": "Research output and impact"
|
63 |
+
},
|
64 |
+
"OE+MIR": {
|
65 |
+
"weight": 0.03,
|
66 |
+
"full_name": "Outreach & Industry Engagement",
|
67 |
+
"description": "External collaborations and industry connections"
|
68 |
+
},
|
69 |
+
"GUE": {
|
70 |
+
"weight": 0.12,
|
71 |
+
"full_name": "Graduate Unemployment Excellence",
|
72 |
+
"description": "Job placement and career success rates"
|
73 |
+
},
|
74 |
+
"GPHD": {
|
75 |
+
"weight": 0.08,
|
76 |
+
"full_name": "Graduate PhD Pursuit",
|
77 |
+
"description": "Higher education and research career progression"
|
78 |
+
},
|
79 |
+
"RD": {
|
80 |
+
"weight": 0.03,
|
81 |
+
"full_name": "Research Development",
|
82 |
+
"description": "Research funding and publication quality"
|
83 |
+
},
|
84 |
+
"WD": {
|
85 |
+
"weight": 0.03,
|
86 |
+
"full_name": "Worldwide Diversity",
|
87 |
+
"description": "International student and faculty representation"
|
88 |
+
},
|
89 |
+
"ESCS": {
|
90 |
+
"weight": 0.02,
|
91 |
+
"full_name": "Economic & Social Campus Sustainability",
|
92 |
+
"description": "Environmental and social responsibility initiatives"
|
93 |
+
},
|
94 |
+
"PCS": {
|
95 |
+
"weight": 0.02,
|
96 |
+
"full_name": "Peer Campus Satisfaction",
|
97 |
+
"description": "Student and faculty satisfaction surveys"
|
98 |
+
},
|
99 |
+
"PR": {
|
100 |
+
"weight": 0.10,
|
101 |
+
"full_name": "Perception Rating",
|
102 |
+
"description": "Reputation and public perception"
|
103 |
+
}
|
104 |
+
}
|
105 |
+
|
106 |
+
def generate_performance_scores(self, seed: int = None) -> Dict:
|
107 |
+
"""
|
108 |
+
Generate random performance scores with optional seed for reproducibility.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
seed (int, optional): Random seed for consistent score generation
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
Dict with generated performance scores
|
115 |
+
"""
|
116 |
+
if seed is not None:
|
117 |
+
random.seed(seed)
|
118 |
+
|
119 |
+
parameters = self.parameters.copy()
|
120 |
+
for param in parameters:
|
121 |
+
parameters[param]["score"] = random.randint(0, 100)
|
122 |
+
|
123 |
+
return parameters
|
124 |
+
|
125 |
+
def calculate_weighted_metrics(self, parameters: Dict) -> Dict:
|
126 |
+
"""
|
127 |
+
Calculate comprehensive weighted performance metrics.
|
128 |
+
|
129 |
+
Computes:
|
130 |
+
- Weighted scores
|
131 |
+
- Total performance score
|
132 |
+
- NIRF ranking
|
133 |
+
- Overall rating
|
134 |
+
"""
|
135 |
+
# Calculate weighted scores
|
136 |
+
for param, values in parameters.items():
|
137 |
+
values["weighted_score"] = values["score"] * values["weight"]
|
138 |
+
|
139 |
+
# Compute total weighted score
|
140 |
+
total_weighted_score = sum(
|
141 |
+
values["weighted_score"] for values in parameters.values()
|
142 |
+
)
|
143 |
+
|
144 |
+
# Calculate ranking and rating
|
145 |
+
nirf_rank = int((1000 - total_weighted_score) / 10)
|
146 |
+
average_score = sum(values["score"] for values in parameters.values()) / len(parameters)
|
147 |
+
overall_rating = round(average_score / 20) # Convert to 1-5 scale
|
148 |
+
|
149 |
+
return {
|
150 |
+
"parameters": parameters,
|
151 |
+
"total_weighted_score": total_weighted_score,
|
152 |
+
"nirf_rank": nirf_rank,
|
153 |
+
"overall_rating": overall_rating
|
154 |
+
}
|
155 |
+
|
156 |
+
def generate_ai_feedback(self, analysis_results: Dict) -> str:
|
157 |
+
"""
|
158 |
+
Generate AI-powered strategic insights using Mistral model.
|
159 |
+
|
160 |
+
Provides comprehensive, actionable feedback on college performance.
|
161 |
+
"""
|
162 |
+
if not self.client:
|
163 |
+
return self._generate_manual_feedback(analysis_results)
|
164 |
+
|
165 |
+
# Construct detailed feedback prompt
|
166 |
+
feedback_prompt = self._construct_feedback_prompt(analysis_results)
|
167 |
+
|
168 |
+
try:
|
169 |
+
completion = self.client.text_generation(
|
170 |
+
model="mistralai/Mistral-7B-Instruct-v0.1",
|
171 |
+
prompt=feedback_prompt,
|
172 |
+
max_new_tokens=500,
|
173 |
+
temperature=0.7,
|
174 |
+
top_p=0.9,
|
175 |
+
repetition_penalty=1.1
|
176 |
+
)
|
177 |
+
return completion
|
178 |
+
except Exception as e:
|
179 |
+
print(f"AI Feedback Generation Error: {e}")
|
180 |
+
return self._generate_manual_feedback(analysis_results)
|
181 |
+
|
182 |
+
def _construct_feedback_prompt(self, analysis_results: Dict) -> str:
|
183 |
+
"""
|
184 |
+
Create a structured prompt for AI feedback generation.
|
185 |
+
"""
|
186 |
+
parameters = analysis_results['parameters']
|
187 |
+
overall_rating = analysis_results['overall_rating']
|
188 |
+
|
189 |
+
prompt = "Comprehensive College Performance Strategic Analysis:\n\n"
|
190 |
+
prompt += "Performance Metrics:\n"
|
191 |
+
|
192 |
+
for param, details in parameters.items():
|
193 |
+
prompt += f"{details['full_name']}: {details['score']}/100\n"
|
194 |
+
|
195 |
+
prompt += f"\nOverall Rating: {overall_rating}/5\n\n"
|
196 |
+
prompt += "Provide a detailed strategic analysis including:\n"
|
197 |
+
prompt += "1. Key institutional strengths\n"
|
198 |
+
prompt += "2. Critical improvement areas\n"
|
199 |
+
prompt += "3. Actionable strategic recommendations\n"
|
200 |
+
prompt += "4. Potential long-term impact on rankings\n"
|
201 |
+
|
202 |
+
return prompt
|
203 |
+
|
204 |
+
def _generate_manual_feedback(self, analysis_results: Dict) -> str:
|
205 |
+
"""
|
206 |
+
Fallback method to generate manual strategic feedback.
|
207 |
+
"""
|
208 |
+
parameters = analysis_results['parameters']
|
209 |
+
overall_rating = analysis_results['overall_rating']
|
210 |
+
|
211 |
+
feedback = "### Strategic Performance Analysis\n\n"
|
212 |
+
feedback += f"**Overall Institutional Rating**: {overall_rating}/5\n\n"
|
213 |
+
|
214 |
+
# Identify top strengths and improvement areas
|
215 |
+
sorted_params = sorted(
|
216 |
+
parameters.items(),
|
217 |
+
key=lambda x: x[1]['score'],
|
218 |
+
reverse=True
|
219 |
+
)
|
220 |
+
|
221 |
+
feedback += "#### Institutional Strengths:\n"
|
222 |
+
for param, values in sorted_params[:3]:
|
223 |
+
feedback += f"- **{self.parameters[param]['full_name']}**: Strong performance ({values['score']}/100)\n"
|
224 |
+
|
225 |
+
feedback += "\n#### Areas for Strategic Enhancement:\n"
|
226 |
+
for param, values in sorted_params[-3:]:
|
227 |
+
feedback += f"- **{self.parameters[param]['full_name']}**: Requires focused improvement (Current: {values['score']}/100)\n"
|
228 |
+
|
229 |
+
return feedback
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
gradio
|
3 |
+
huggingface_hub
|