|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
import spaces |
|
import torch |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
|
|
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline |
|
|
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
NUM_VIEWS = 6 |
|
HEIGHT = 768 |
|
WIDTH = 768 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
pipe = prepare_pipeline( |
|
base_model="stabilityai/stable-diffusion-xl-base-1.0", |
|
vae_model="madebyollin/sdxl-vae-fp16-fix", |
|
unet_model=None, |
|
lora_model=None, |
|
adapter_path="huanngzh/mv-adapter", |
|
scheduler=None, |
|
num_views=NUM_VIEWS, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to(device) |
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
|
|
@spaces.GPU() |
|
def infer( |
|
prompt, |
|
image, |
|
do_rembg=True, |
|
seed=42, |
|
randomize_seed=False, |
|
guidance_scale=3.0, |
|
num_inference_steps=30, |
|
reference_conditioning_scale=1.0, |
|
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast", |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if do_rembg: |
|
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device) |
|
else: |
|
remove_bg_fn = None |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
if isinstance(seed, str): |
|
try: |
|
seed = int(seed.strip()) |
|
except ValueError: |
|
seed = 42 |
|
|
|
images, preprocessed_image = run_pipeline( |
|
pipe, |
|
num_views=NUM_VIEWS, |
|
text=prompt, |
|
image=image, |
|
height=HEIGHT, |
|
width=WIDTH, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
remove_bg_fn=remove_bg_fn, |
|
reference_conditioning_scale=reference_conditioning_scale, |
|
negative_prompt=negative_prompt, |
|
device=device, |
|
) |
|
return images, preprocessed_image, seed |
|
|
|
|
|
examples = [ |
|
[ |
|
"A decorative figurine of a young anime-style girl", |
|
"assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png", |
|
True, |
|
21, |
|
], |
|
[ |
|
"A juvenile emperor penguin chick", |
|
"assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png", |
|
True, |
|
0, |
|
], |
|
[ |
|
"A striped tabby cat with white fur sitting upright", |
|
"assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png", |
|
True, |
|
0, |
|
], |
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.Markdown( |
|
f"""# MV-Adapter [Image-to-Multi-View] |
|
Generate 768x768 multi-view images from a single image using SDXL <br> |
|
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)] [Tips: if error occurs, wait for a few seconds and try again] |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image( |
|
label="Input Image", |
|
sources=["upload", "webcam", "clipboard"], |
|
type="pil", |
|
) |
|
preprocessed_image = gr.Image(label="Preprocessed Image", type="pil") |
|
|
|
prompt = gr.Textbox( |
|
label="Prompt", placeholder="Enter your prompt", value="high quality" |
|
) |
|
do_rembg = gr.Checkbox(label="Remove background", value=True) |
|
run_button = gr.Button("Run") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=30, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="CFG scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=3.0, |
|
) |
|
|
|
with gr.Row(): |
|
reference_conditioning_scale = gr.Slider( |
|
label="Image conditioning scale", |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
|
|
with gr.Row(): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
placeholder="Enter your negative prompt", |
|
value="watermark, ugly, deformed, noisy, blurry, low contrast", |
|
) |
|
|
|
with gr.Column(): |
|
result = gr.Gallery( |
|
label="Result", |
|
show_label=False, |
|
columns=[3], |
|
rows=[2], |
|
object_fit="contain", |
|
height="auto", |
|
) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
examples=examples, |
|
fn=infer, |
|
inputs=[prompt, input_image, do_rembg, seed], |
|
outputs=[result, preprocessed_image, seed], |
|
cache_examples=True, |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
input_image, |
|
do_rembg, |
|
seed, |
|
randomize_seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
reference_conditioning_scale, |
|
negative_prompt, |
|
], |
|
outputs=[result, preprocessed_image, seed], |
|
) |
|
|
|
demo.launch() |
|
|